Science

Intent

As pupils begin their scientific journey with us at Longthorpe Primary School, they come with a natural curiosity about the world and phenomena around them. Therefore, a core aim of our science curriculum is to build on this by celebrating and developing pupils' inquisitive minds. Through our curriculum's wide range of purposeful, planned and structured learning opportunities, pupils will gain a solid understanding of scientific processes, the scientific method and an understanding of the purpose and implications of the three core disciplines of science: biology, chemistry and physics. It is our intent that pupils will begin to understand how these disciplines link to their daily lives, the different stages of their education and through their future life experiences. We also think it is important for pupils to see themselves reflected in the science curriculum, by highlighting present-day role models and the contributions of scientists from a wide range of backgrounds. It is our aim that all pupils will transition to year 7 with a solid set of scientific skills and knowledge alongside the strong sense of awe and wonder that they began school with, setting them up successfully to be the scientists of tomorrow.

Our science curriculum has been chosen because it promotes the structured acquisition of substantive scientific knowledge based on Wynne Harlen's 'Big Ideas of Science Education'. These ideas are weaved through the curriculum as 'vertical concepts' that, when understood together, allow pupils to begin comprehend the complex world around them. Our curriculum has been deliberately designed for pupils to master substantive knowledge by:

- Ensuring pupils master core content through the development of key concepts and the timely revisiting of key knowledge.
- Sequencing the curriculum and selecting knowledge to allow for gradual development of our vertical concepts the 'Big Ideas' in science to provide firm foundations for KS3.
- Preventing common misconceptions that are often formed at an early age and prove problematic at the later stages of pupils' science education.
- Purposefully teaching appropriate knowledge that goes beyond the KS1 and KS2 national curriculum, to aid current and future understanding, and to smooth the transition to KS3.
- Encouraging pupils make connections between the disciplines of science, the wider curriculum and the wider world.

	Vertical Concepts – the 'Big Ideas'					
1. All material in the Universe is made of very small particles.	2. Objects can affect each other at a distance.	3. Changing the movement of an object requires a net force acting on it.	4. The total amount of energy in the Universe is always the same but energy can be transformed when things change or are made to happen.			
5. The composition of Earth and its atmosphere and the processes occurring within them shape the Earth's surface and its climate.	6. The solar system is a very small part of one of millions of galaxies in the Universe.	7. Organisms are organised on a cellular basis.	8. Organisms require a supply of energy and materials for which they are often dependent on or in competition with other organisms.			

9. Genetic information is passed down from one generation of organisms to another.	10. The diversity of organisms, living and extinct, is the result of evolution.	11. Organisms are healthy when physically, mentally and socially well and free from disease.
--	---	--

Our curriculum has also been designed to teach our pupils to 'think as scientists' and work scientifically. The **Working Scientifically** elements of the science curriculum have been mapped out throughout each year group to ensure pupils have many opportunities to apply their scientific skills. The curriculum has been sequenced so that the content is reviewed in subsequent units (and is also reviewed in other subject areas). This is achieved by:

- Sequencing Working Scientifically elements so that they are explicitly taught and practised alongside the substantive knowledge, and regularly reviewed and built upon across the years and key stages.
- Making deliberate and explicit links to other curriculum areas particularly geography and mathematics to ensure there is a consistent approach to teaching content.
- Planning practical tasks that have a clear purpose: to demonstrate or prove substantive concepts, or to allow pupils to deliberately practice working scientifically skills in a relevant context.

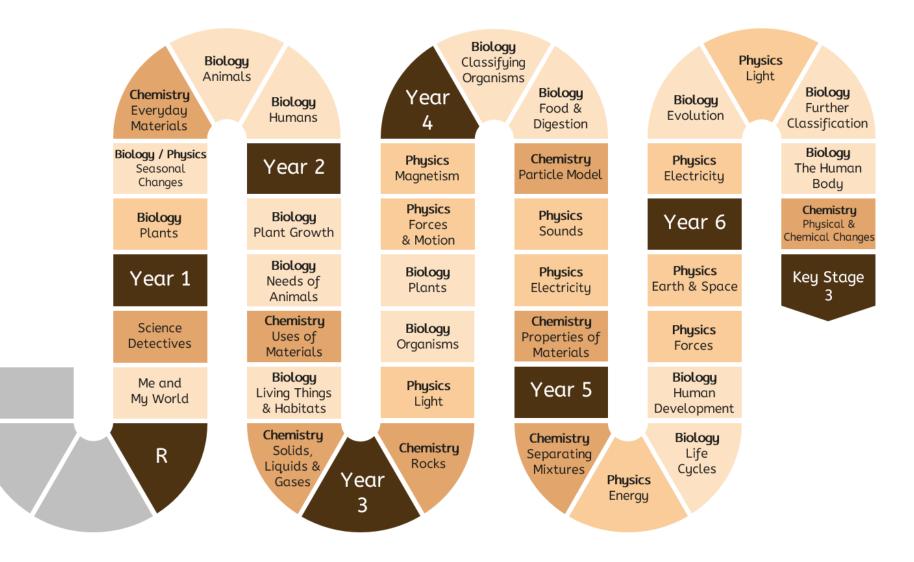
	Working Scientifically Elements					
	Scientific Attitudes & Planning	Measuring & Observing	Recording & Presenting	Analysing & Evaluating		
EYFS	Make predictions about what might happen when I try something.	Measure/observe using senses. Observe using a magnifying glass safely.	Use hoops to classify objects based on simple criteria.	Notice patterns in the world around me.		
Year 1	Scientists look for patterns in the world around them. Scientists group objects or living things based on their properties.	Gather information from text/ books/ images.	Record numerical or descriptive observations in a table. Draw a diagram, a simple scientific drawing that explains or informs. Use a table to classify items based on properties.	Make simple statements about the results of an enquiry.		

	Scientists conduct secondary research to learn from what other scientists have already learned.		Use a Carroll diagram to classify items based on properties. Use a Venn diagram to classify items into two or three sets based on properties.	
Year 2	It is important that we keep as much as we can the same, apart from the one thing we measure and the one thing we change. Make a prediction based on substantive knowledge. There are four main stages of enquiry (A&P, M&O, R&P, A&E). Scientists identify potential hazards in their experiments and plan ways to reduce them.	Make systematic observations of an object.	Use a pair of axes to classify items based on the extent it displays two properties.	Ask further questions that could be explored to extend findings.
Year 3	Select most appropriate equipment to measure (the variables) that will give you the best chance of an accurate result. A dependent variable is what you measure; an independent variable is what you change; controlled variables are things that stay the same. Scientists identify factors in an investigation that should be controlled, and try to find ways to control them. Write an appropriate method. Science is studied as three disciplines: biology (study of organisms), chemistry (study of materials) and physics (study of energy).	Gather information from the internet. Anomalous results should be discarded and rerecorded. Data is repeatable if the same person repeats the investigation and gets the same results; data is reproducible if the investigation is repeated by a different person and the results are the same. Taking multiple readings allows you to see if your data is repeatable, and helps identify outliers.	Design a table to collect data with the appropriate number of rows and columns and correct headings.	Draw conclusions (e.g. 'the greater the, the greater the'). Use scientific understanding to explain their findings. Suggest ways to improve practical procedures to obtain more accurate measurements. Use findings of investigation to make further predictions.
Year 4	Set a hypothesis to test. Draw diagram of the investigation.	Gather information using a data logger (e.g. sound meter app; heart rate app).	Use a classification key to identify an object.	Identify scientific evidence that has been used to support or refute ideas.

	Scientists use models to help explain their ideas.		Draw a dichotomous classification key to help others identify an object. Drawings can be labelled and annotated Present information orally using a prop or demonstration. Present information in a written format. Draw labelled and annotated diagrams.	
Year 5	Science is studied as three disciplines: biology (study of organisms), chemistry (study of properties of matter and how it interacts with energy) and physics (study of energy). Scientists look for patterns in data to try to identify correlations.	Measure force using a Newtonmeter.	Scatter graphs can help you decide if there is a relationship between two variables. (Geography: Interpret and construct climate graph). Line graphs can be used when data is continuous; bar charts can be used when data is discrete.	Make judgements on the accuracy of the data Some people may agree or disagree with the use of some scientific discoveries. Science is never 'complete' and scientists are always working to make models more accurate or to discover new explanations.
Year 6		Taking multiple readings allows you to see if your data is repeatable, helps identify outliers and allows a mean to be calculated.	Decide which graph is most appropriate for the enquiry.	Calculating the mean can be used as a method of analysing data.

Implementation

Science is taught each week and deliberately given extended time to ensure that the curriculum can be explored in depth by our pupils. A range of teaching and learning strategies are used in science to keep all pupils engaged and to teach and inspire them to want to investigate the world around them in different ways, such as: group discussions, delivering presentations, watching and taking part in demonstrations, engaging with various media content, practical explanations, and experiments, pupil-led instruction and investigative work.


The use of subject-specific vocabulary is a key part of our science lessons and is expected to be used in both oral and written work by our pupils. The key tier 2 terms (below) are used frequently alongside the teaching of science-specific tier 3 specific words which are highlighted in the Progression of Knowledge and Skills section later in this overview.

enquire	discuss	locate	observe	plan
select	measure	record	analyse	communicate

Lessons incorporate many practical, collaborative and investigative activities which ensure that pupils are able to be full participants in their learning and apply the 'working scientifically' skills they have learned. Pupils are also expected to record their learning in a range of appropriate formats that may include: written accounts including instructions, reports and explanations, illustrations, annotated diagrams, spreadsheets (data collection), charts, graphs and tables.

EYFS	By the end of the EYFS, pupils will have experienced science in many forms in their classroom environment. Primarily through specific learning associated with environmental science and forces and motion linked to the Early Learning Goal of 'The Natural World', however science will also have been encountered as part of the ELG of 'Managing Self' where pupils explore hygiene and healthcare and the ELG 'Creating with Materials' where pupils explore materials and processes. In both the outdoor and indoor learning areas there are opportunities for both pupil-led and teacher directed exploratory play. The pupils are encouraged to follow their curiosity, explore using their senses, observe, predict, investigate and be creative when following their natural inquisitiveness.
KS1	By the end of KS1, pupils will begin to recognise how to develop their skills, knowledge and understanding through a range of scientific investigations, where pupils work individually, in pairs or in groups. By the end of the KS1, pupils will be able to convey their knowledge of processes associated with science, apply knowledge to understand the world around them, understand methods of scientific enquiries, predict some outcomes of scientific enquiries, understand some different variables when conducting scientific enquiries, know some current uses of science, retain and recall scientific vocabulary and record an analyse simple data.
KS2	By the end of KS2, pupils will be able to apply their skills, knowledge and understanding through a greater range of scientific experiments, where pupils work individually, in pairs or in groups. By the end of KS2, pupils will be able to develop their knowledge and understanding of processes associated with biology, chemistry and physics, understand and apply methods of scientific investigation, predict the outcomes of scientific enquiries, understand the different variables when conducting scientific enquiries, convey a sound knowledge of fair testing, know current uses of science and consider future implications, retain and recall scientific vocabulary, record and analyse data in a variety of ways.

Units Overview

Progression of Knowledge and Skills

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year R				Spring in our step Wildlife and weather in spring and winter; habitats around our school		Science detectives Properties of materials and habitats around the world
				Substantive knowledge: Identify the differences in wildlife that we see and the weather patterns in spring and winter. Identify a range of animals, including insects and spiders that live in habitats around the school. Explore, make observations, and ask questions about the natural world, gaining a developing understanding of important processes and changes they observe. Insects like ants, bees, and ladybirds are animals. Spiders and insects live in the habitats around		Substantive knowledge: Describe what they see, hear and feel when exploring forces and materials. Talk about changes they observe e.g. melting and freezing, cooking. Fruits like apples, bananas, peaches and oranges have skins, flesh and seeds. Use accurate vocabulary to describe the properties of materials and talk about forces they have experienced. Disciplinary knowledge: A&P: Make predictions about what might happen
				our school. Some plants have flowers.		when I try something.

Year 1	BIOLOGY	BIOLOGY / PHYSICS	CHEMISTRY	Disciplinary knowledge: A&P: Make predictions about what might happen when I try something. M&O: Measure/observe using senses. Observe using a magnifying glass safely. R&P: Use hoops to classify objects based on simple criteria. A&E: Notice patterns in the world around me. Vertical Concepts: 5B: We experience different types of weather in different seasons (focus on spring and winter).	BIOLOGY	M&O: Measure/observe using senses. R&P: Use hoops to classify objects based on simple criteria. A&E: Notice patterns in the world around me.
Year 1	Plants Identifying and naming common plants and describing basic structures	Seasonal changes Observing changes across four seasons and describing associated weather	Everyday materials Distinguishing objects from their material, and describing simple properties	review	Animals Naming reptiles, fish, amphibians, birds and mammals; carnivores, herbivores, omnivores	Humans Human body parts and senses
	Substantive knowledge: A plant is a living thing that usually grows in one place. Coniferous plants keep their leaves all year round (e.g. pine, yew, juniper in UK). Deciduous plants lose their leaves in winter (e.g.	Substantive knowledge: Weather is a description of what the conditions are like in a particular place. Examples of weather include sunny, rainy, windy, warm, cold, cloudy, drizzle, snow, stormy (with thunder and lightning).	Substantive knowledge: An object is a 'thing' that can be seen and touched. Objects have a name and often have a purpose. For example, a cup is the object, and its purpose is for drinking from. The material is what an object is made of, for		Substantive knowledge: Animals are different to plants because they usually move around, rather than stay in the same place. Animals can be placed into different groups (carnivores, herbivores	Substantive knowledge: Humans are omnivores, but some choose to eat only plants. Humans are made of many different body parts including head, neck, back, ears, eyes,

oak, silver birch, horse	The weather can change	example a cup can be	and omnivores) based	nose, mouth, arms,
chestnut, sycamore, ash).	rapidly in one day (e.g.	made of paper or plastic.	the foods they eat.	shoulders, elbows,
Trees are a type of plant	sunny morning and rainy	Common materials	Animals have different	hands, fingers, legs,
that have a tall stem made	afternoon).	include wood , paper ,	features, including fins ,	knees, feet, toes, face.
of wood.	The UK and our local area	metal, glass, plastic,	wings, scales, legs,	Humans have five
The basic parts of a plant	have daily weather	water, rock, rubber and	feathers, claws, paws	senses, smell, taste,
are leaves, flowers, roots ,	patterns.	cotton.	etc.	touch, sight and
stem/trunk/branch.	Extreme weather is very	Wood, water, rock,	Some animals can be	hearing.
	different from the weather	rubber and cotton are	grouped into fish ,	The five senses are
Disciplinary knowledge:	that you would usually	natural materials.	amphibians, reptiles,	each associated with
Draw and label a scientific	expect to see in the	Paper, glass, and plastic	birds and mammals	different body parts
diagram of a plant	country.	are artificial (man-made)	(name common	(eyes, ears, nose,
R&P: Draw a diagram, a	There are four seasons:	materials.	examples).	tongue).
simple scientific drawing	spring, summer, autumn	Materials have different		
that explains or informs.	and winter.	physical properties,	Disciplinary	Disciplinary
Classify trees as deciduous	The weather changes	some materials are hard	knowledge:	knowledge:
or coniferous using images	gradually as we move from	whilst others are soft ,	A&P: Scientists conduct	Draw a scientific
of them at different times in	season to season.	some can be described as	secondary research to	diagram, labelling key
the year	Recognise differences	rough whilst others are	learn from what other	human body parts
R&P: Use a table to classify	between four seasons in	smooth, some are dull	scientists have already	
items based on properties	terms of living things (trees	whereas others are	learned.	Vertical Concepts:
	lose leaves; flowers drop	shiny.	R&P: Use a Venn	8: Living things,
	and we see different	Materials can be grouped	diagram to classify	including humans,
Vertical Concepts:	animals, such as butterflies	in a number of ways	items into two or three	react to their
5A: Some plants grow in	in the summer).	based on their physical	sets based on	surroundings with
soil.	Daytime is when the Earth	properties.	properties.	their senses.
7: Plants are organised	is facing the Sun ; nighttime	The material that we		11: Humans have five
with roots, stem, leaves	is when the Earth is facing	choose to make an object	Vertical Concepts:	senses. Some people
and flowers.	away from the Sun.	from depends on its	10: There are lots of	have impairments, like
	In the summer that there	purpose (e.g. no	types of animal, and	visual and hearing
	are more hours of daylight	chocolate kettle).	some types can be	impairments.
	and in winter there are		grouped as amphibians,	
	fewer hours of daylight.	Disciplinary knowledge:	birds, fish, mammals	
	The Moon is more visible	Sort materials into a	and reptiles.	
	at night.	Carroll diagram based on		
		their characteristics		
	Disciplinary knowledge:	A&P: Scientists group		
	Conduct geographical	objects or living things		
	/scientific fieldwork and	based on their		
	observe/collect data about	properties.		
	the weather.			

		A&P: Scientists and geographers look for patterns in the world around them. R&P: Record numerical or descriptive observations in a table. Use information from images of four seasons to identify and record differences in wildlife and weather in four seasons M&O: Gather information from text/books/images. Vertical Concepts: 5B: The weather can change rapidly. The four different seasons have different weather patterns. 6: Daytime is when the Earth is facing the Sun; nighttime is when the Earth is facing away from the Sun.	R&P: Use a Carroll diagram to classify items based on properties. <i>Find the best material for</i> <i>a dog bed (waterproof and</i> <i>soft)</i> A&E: Make simple statements about the results of an enquiry. Vertical Concepts: 1: Objects have a purpose and are made of different materials.			
Year 2	BIOLOGY Plant growth Plants grow from seeds, and require water, light and a suitable temperature	BIOLOGY Needs of animals Animals need water, food and air to survive and to have offspring	CHEMISTRY Uses of materials Comparisons of an object's material with its use; impact of bending, twisting on solid objects	BIOLOGY Living things & habitats Introduction to habitats, micro- habitats, and simple food chains	CHEMISTRY Solids, liquids and gases How the same substances can exist as solids, liquids and gases	Consolidation and review
	Substantive knowledge: A seed is living. A seed is the embryonic stage of the plant life cycle. A seed consists of three parts: the seed coat, the endosperm and the embryo.	Substantive knowledge: A natural resource is a material or substance that is produced by the environment (not man made) and may be used to support life.	Substantive knowledge: Matter is all the 'stuff' that we experience in everyday life, including air, water, tables and us! Materials have different physical properties such as malleable,	Substantive knowledge: Everything in the world can be categorised as either alive , used to be alive or has never been alive.	Substantive knowledge: All materials are made of a single substance or a mixture of substances. Matter is what all 'stuff' is made from.	

Germination is the	Food and water are natural	waterproof, heatproof,	Living things are called	There are three states	
development of a plant	resources.	windproof and	organisms.	of matter: solids,	
from a seed . During	Animals, including humans,	absorbent.	Organisms m ove,	liquids and gases.	
germination, roots and	need food to survive.	These physical properties	reproduce, are sensitive	Substances can exist as	
shoots emerge and grow.	Humans need to eat a	make the materials more	to their surroundings,	solids, liquids and gases.	
To germinate , a seed	healthy and balanced diet .	suitable for certain uses.	grow, need oxygen, get	The three states of	
needs water and a certain	This should include all the	Everyday materials such	rid of their waste, and	matter have different	
temperature.	nutrients that we need.	as wood, metal, plastic,	need n utrition (MRS	properties.	
Temperature is a measure	should be high in fruits and	brick, rock, paper and	GOWN).	Liquids take the shape	
of how hot or cold		cardboard have these	Animals move from	of the container they	
	vegetables and low in fats,				
something is.	salt and sugars.	physical properties but to	place to place, while	are in, when you move	
Some plants grow from	Animals, including humans,	different extents.	plants move on the	the liquid into a	
bulbs . A bulb is a resting	need water and oxygen to	Different combinations	spot.	different container the	
stage for certain plants.	survive.	of materials can be used	Habitats are the places	shape will change.	
They have a large	Animals, including humans,	to create different	that living things live. A	Solids keep their shape	
underground food store,	the right temperature to	objects, for example a	very small habitat is	unless a force is put on	
short stems and fleshy	survive.	saucepan or a mop.	called a micro-habitat ,	it. They will change	
leaves.	Animals, including humans,	The shape of some solid	and these can be found	their shape if you cut	
When a plant grows it gets	reproduce. This means	objects made from some	within larger habitats.	them or squash them.	
bigger.	they have offspring that	materials can be changed	Flora describes plant	Gases have no fixed	
Plants need water, light	grow into adults.	by squashing , bending ,	life; fauna describes	shape or volume, they	
and a suitable	As animals grow , they get	twisting or stretching	animal life.	spread out to fill a	
temperature to grow.	bigger.	the material.	A species is a group of	container. If they are	
Many plants make fruits or	Some animals change form	Sustainability means	living things that are the	not in a container, they	
vegetables; some of these	as they get older (e.g.	meeting the needs of the	same type.	will keep spreading out.	
grow below ground.	tadpole to frog).	people today, whilst	Biodiversity is a word	We can decide if a	
	Humans need exercise to	meeting the needs of	we use to describe all of	substance is in its solid,	
Disciplinary knowledge:	stay healthy.	people of the future.	the living things in an	liquid or gaseous state	
Investigate the conditions	Humans need to practise	One way to use materials	area.	by looking at its	
required for germination	hygiene to stay healthy.	more sustainably is to	Animals and plants in a	properties.	
A&P: Make a prediction		reduce, reuse and	habitat depend on each	One substance can	
based on substantive	Disciplinary knowledge:	recycle wherever	other, e.g. for food or	exist in the different	
knowledge.	Gather information from	possible.	shelter.	states, when the	
A&P: It is important that	images and/or text and		Animals get their food	substance is in a	
we keep as much as we can	group animals into those	Disciplinary knowledge:	from plants and other	different state it is still	
the same, apart from the	that change form as they	Classify materials based	animals. This food	the same substance.	
thing we measure and the	grow and those that do not	on the extent of its	provides the energy	The Earth is getting	
one thing we change.	Gather information from	properties by using a pair	animals need.	warmer. We call this	
Investigate how light affects	images and/or text and	of axes	Most plants produce	global warming. Global	
the growth of plants	group animals into those	R&P: Use a pair of axes to	their own food and are	warming will cause	
	that change	classify items based on	called producers .		

 MCO: Make evetementin		the outent to which it	In a faced abain the	solid ice to melt and	
M&O: Make systematic	Mantinal Companyta	the extent to which it	In a food chain , the		
observations of an object.	Vertical Concepts:	displays two properties.	arrows show where the	become liquid water.	
	5B: The air is all around us	Investigate the best material to use to make an	energy is being transferred from and to.	Dissiplinant	
	on Earth. Air has oxygen in			Disciplinary	
	it.	umbrella that is	Living things are	knowledge:	
	8: All living things need	waterproof and windproof	adapted to their	Classify different	
	food, oxygen, water and	A&P: There are four main	environment. This	substances as solids,	
	certain temperature	stages of enquiry (A&P,	means they may not be	liquids or gases.	
	conditions.	M&O, R&P, A&E).	able to survive in other		
	9: Plants and animals	A&P: Scientists identify	habitats.	Vertical Concepts:	
	reproduce (have offspring).	potential hazards in their	Some animals and	1: Matter can exist in	
	11: Humans need to	experiments and plan	plants are adapted to	three different states:	
	exercise, practise good	ways to reduce them.	life in a hot desert :	as solids, liquids and	
	hygiene and eat a healthy	A&E: Ask further	camels and cacti. Some	gases. The amount and	
	and balanced diet to stay	questions that could be	animals and plants are	type of substance does	
	healthy. Their diet should	explored to extend	adapted to life in a cold	not change when the	
	be high in fruits and	findings.	desert: Arctic fox, polar	matter changes state.	
	vegetables and low in fats,		bear, penguin and	5B: Global warming	
	sugar and salt.	Vertical Concepts:	shrubs.	describes the increase	
		1: All the 'stuff'		in Earth's average	
		encountered in everyday	Disciplinary	temperatures.	
		life, including air, water	knowledge:		
		and different kinds of	Examine microhabitats		
		solid substances, is called	using a magnifying glass		
		matter. Different	and counting the number		
		materials are	and type of organisms		
		recognisable by their	found in an area		
		properties. Materials	M&O: Observe using a		
		have different	magnifying glass safely.		
		properties, which make			
		them suitable for specific	Vertical Concepts:		
		purposes.	4: All living things need		
		2: We can move or	food to give them		
		change the shape of	energy. All food chains		
		objects by pushing and	start with a producer (a		
		pulling: by squashing,	living thing that makes		
		bending, twisting or	its own food). The		
		stretching the materials.	arrows in a food chain		
			show where energy is		
			being transferred from		
			and to.		

1				
		8: Most plants make		
		their own food.		
		Animals' food comes		
		from eating plants		
		(herbivores) or by		
		eating animals		
		(carnivores), which		
		have eaten plants or		
		other animals. These		
		relationships can be		
		represented in a food		
		chain. Plants and		
		animals are often		
		dependent on each		
		other. Organisms are		
		adapted to their		
		environment. If		
		conditions in a habitat		
		change, organisms may		
		not be able to survive.		
		Organisms move,		
		reproduce, are sensitive		
		to surroundings, grow,		
		need oxygen, get rid of		
		waste, and need		
		nutrition (MRS GOWN).		
		9: A species is a group		
		of living things of the		
		same type.		
		10: Biodiversity		
		describes all the		
		different living things in		
		an area. Living things		
		are adapted to their		
		environments. If the		
		environment changes,		
		the organisms may no		
		longer be adapted and		
		may struggle to survive.		
		,		
	•		•	

Year 3	CHEMISTRY	PHYSICS	BIOLOGY	BIOLOGY	PHYSICS	PHYSICS
	Rocks	Light	Organisms	Plants	Forces & motion	Magnetism
	Comparisons of types of	Relationship between light	The role of muscles and	Features of flowering	Introducing pushes and	Contact and non-
	rocks and how fossils are	and how we see; the	skeletons; the	plants and what they	pulls; opposing forces,	contact forces,
	formed	formation of shadows	importance of nutrients	need to survive	and balanced forces	including friction and
						magnetism
	Substantive knowledge:	Substantive knowledge:	Substantive knowledge:	Substantive	Substantive	Substantive
	A rock is a naturally	Light travels in straight	The main food groups are	knowledge:	knowledge:	knowledge:
	occurring material which is	lines.	carbohydrates (starch	Oxygen and carbon	Forces are pushes or	Contact forces require
	made up of different	We see when light enters	and sugars), proteins ,	dioxide are found in the	pulls.	contact between two
	minerals.	our eyes.	fats, fibre, vitamins and	air.	Forces arise when	objects (e.g. friction).
	The Earth's crust is it's the	Darkness is the absence of	minerals.	Plants need air (oxygen	objects interact with	Non-contact forces
	outermost layer of our	light.	Humans need a balanced	and carbon dioxide),	each other.	can affect an object at
	planet. It is made of rocks	Sources of light emit their	diet which is made of	water, light, nutrients	Forces can cause a	a distance (e.g.
	and minerals.	own light, and others	main food groups.	from the soil, space, and	change in speed,	magnetism).
	Natural rocks are either	reflect light; both occur in	Plant-based diets can be	a suitable temperature	direction or shape of an	Friction is a contact
	igneous, sedimentary or	nature as well as man-	balanced.	to grow.	object.	force because it
	metamorphic.	made objects.	Eating foods that are in	Requirements for life	Forces act in particular	requires the two
	Man-made rocks, like	Some materials are more	season can reduce food	vary from plant to plant	directions.	objects to be touching.
	concrete, are called	reflective than others.	waste.	and they are adapted to	We use arrows to show	Magnetism is the
	anthropic rocks.	Opaque, translucent and	Vitamins, minerals and	their environment .	the size of the force and	force exerted by
	Igneous rock is formed	transparent materials	fibre are needed and	Roots absorb nutrients	the direction it acts in.	magnets when they
	when magma or lava cools	allow no, some or all light	being deficient in these	from the soil and help	Forces that act in	attract or repel each
	down.	to pass through them.	causes diseases.	anchor the plant.	opposite directions are	other.
	Sedimentary rock is	Shadows form behind an	Different animals have	The stem/trunk	called opposing forces .	Magnets can exert a
	formed when layers of	opaque object when light	different nutritional	supports the plant and	Forces that act in	force at a distance, so
	small sediments are	from a source is blocked.	needs.	transports water up the	opposite directions and	is a non-contact force.
	compressed over a long	The shape and position of	Our skeleton is made up	plant. The xylem	are equal are described	Magnets have a north
	period of time. Igneous	shadows changes with the	of bones that grow as we	transports water and	as balanced forces.	and a south pole .
	rock can become	angle of the light source.	grow.	nutrients from the	When forces are	If opposite poles are
	sedimentary rock if it	The size of shadows	Humans and some other	roots, and the phloem	balanced, there is no	facing, the magnets
	breaks down into small	changes when the distance	animals have skeletons.	transports food from	change in the speed,	will be attracted to
	pieces and forms layers.	of the light source changes.	Organs are parts of the	the leaves to the all	direction or shape of an	one another (the
	Metamorphic rock is	Light from the Sun can be	body that do a particular	parts of the plant.	object.	magnets pull towards
	formed when igneous or	dangerous and there are	job, the heart pumps	Leaves use sunlight,	Forces that act in	each other). If the
	sedimentary rock is put	ways to protect our eyes	blood around the body	carbon dioxide from the	opposite directions and	same poles are facing,
	under lots of pressure .	and skin.	and the lungs are used	air and water to make	are not equal are	the magnets will repel
	Different rocks have	Dissipling and the stude of t	for breathing which gets	their own food.	described as	(the magnets will push
	different properties,	Disciplinary knowledge:	air into your body.	The four main stages of	unbalanced forces.	away from each
	including permeable	Investigate how the height	The skeleton protects	the plant's life cycle	When forces are	other).
	/impermeable.	of a shadow varies as the	organs, e.g. the skull	include germination,	unbalanced, there is a	

A fossil is physical	distance between light	protects the brain; and	pollination, fertilisation	change in the speed,	Magnets attract
evidence of an ancient	source and object changes	the ribcage protects the	and seed dispersal.	direction and/or shape	objects made from
plant or animal; this could	A&P: A dependent variable	lungs, heart and other	Coniferous trees	of an object.	magnetic materials.
be their preserved	is what you measure; an	important organs.	transport their seeds in	Friction is a force	Some metals are
remains or other traces	independent variable is	The skeleton supports	cones; deciduous trees	between two surfaces	magnetic but not all
that they made when they	what you change;	the body, e.g. the spine	us e seeds and flowers	that are sliding or trying	are. Plastics, wood,
were alive.	controlled variables are	helps the body stand.	/fruit.	to slide over each other.	fabric, glass are all
Trace fossils are not	things that stay the same.	The skeleton helps the	Pollination and	The bumpier or rougher	non-magnetic.
physical remains of	A&P: Scientists identify	body move , e.g. pelvis	fertilisation usually	the surfaces, the more	The closer to the poles
organisms; they are	factors in an investigation	and knee joints.	takes place in flowers.	friction there will be.	of the magnet, the
indirect evidence of life.	that should be controlled,	The muscles and	Dispersal is important		stronger the magnetic
Examples include imprints	and try to find ways to	skeleton are required to	to make sure there is	Disciplinary	force.
of, or marks left by, an	control them.	help the body move.	enough space for seeds	knowledge:	Magnetic forces act at
organism, such as a	A&P: Recognise risk and	When muscles contract	to germinate and plants	Investigate how the	a distance (non-
footprint, imprint of a	build a plan to minimise	they pull the bone.	to grow.	surface of a ramp affects	contact force) and can
feather or poo.	them.	Some organisms have	Pollinators like bees	the distance a car will	act through materials.
Fossils can be formed	A&P: Select most	endoskeletons, some	and other insects, bats	travel	A stronger magnet can
when an organism or trace	appropriate equipment to	have exoskeletons , and	and hummingbirds are	M&O: Taking multiple	attract an object
is buried under sediment.	measure (the variables).	some have neither.	vital for the	readings allows you to	through thicker layer
The remains break down	A&P: Write an appropriate	Endoskeletons grow with	reproduction of many	see if your data is	of material compared
slowly and, as layers of	method.	the organism.	plants.	repeatable and helps	to a weaker magnet.
sediment build up, the	2: Objects can affect other	Exoskeletons do not	Seeds can be dispersed	you identify anomalous	The stronger the
layers are squashed,	objects even when they	grow, so need to be shed	by wind (e.g. sycamore),	results. Anomalous	magnet, the heavier
turning them into	are not in contact with	and replaced.	by animals in their	results should be	the object it can
sedimentary rock. Fossils	them. Light reaches our	Science is studied as	droppings (e.g. things	discarded and re-	attract.
can also form when dead	eyes, even though the light	three disciplines: biology	that are eaten, like a	recorded.	
organisms are frozen in ice	source may be far away.	(study of organisms),	raspberry), attached to	M&O: Data is	Disciplinary
or preserved in amber.	6: The Sun emits light,	chemistry (study of	animal fur (e.g.	repeatable if the same	knowledge:
Megafauna are very large	some of which reaches	materials) and physics	goosegrass), or seeds	person repeats the	Test which materials
animals. Fossils provide	Earth. The Moon reflects	(study of energy).	can be self-propelled	investigation and gets	are magnetic, and use
evidence for megafauna	light from the Sun.		(pea pod).	the same results; data is	this knowledge to make
that are extinct.		Disciplinary knowledge:		reproducible if the	predictions about
When there are no living		Label the main bones on a	Disciplinary	investigation is	which objects will be
individuals of a species,		diagram of a human	knowledge:	repeated by a different	magnetic.
that species is extinct .		skeleton, give the function	Investigate the impact of	person and the results	A&E: Use findings of
Soil is a mixture of tiny		of each bone.	light on the growth of	are the same.	an investigation to
pieces of rock, dead plants			plants, drawing a block	A&E: Draw conclusions	make further
and animals, air and water.		Vertical Concepts:	diagram to illustrate	(e.g. 'the greater the,	predictions.
Different soils have		7: Humans are organised	results	the greater the').	A&E: Suggest ways to
different properties.		with organs like hearts	R&P: Design a table to		improve practical
		and lungs, which do	collect data with the	Vertical Concepts:	procedures to obtain

	Disciplinary knowledge: Make observations about rocks using senses and magnifying glass, and classify them in a Carroll diagram/pair of axes Vertical Concepts: 5A: Rocks are formed when placed under pressure. Much of the solid surface of the Earth is covered in soil, which is a mixture of pieces of rock of various sizes and the remains of organisms. Some soil also contains air, water and some nutrients. There are three main kinds of rock: igneous, sedimentary and metamorphic, which each have different composition and properties. 9: When there are no living individuals of a species to reproduce, the species is extinct. 10: We know about extinct and dead species from fossils. These are the preserved remains (or traces) of organisms that lived many years ago.		particular jobs. The skeleton and muscles allow the body to move. 10: To help scientists make sense of the diversity of organisms, they are classified into different groups. Each group has similar features. 11: A balanced diet includes the right proportions of the main food groups of carbohydrates (starch and sugars), proteins, fats, fibre, vitamins and minerals. Animals, including humans, may get diseases (like scurvy) if they are deficient in vitamins and minerals.	appropriate number of rows and columns and correct headings. <i>Research methods of</i> <i>seed dispersal of</i> <i>different plants</i> M&O: Gather information from the internet. Vertical Concepts: 4: In most plants, sunlight, carbon dioxide and water are used to make food in the leaves. 5B: Air has carbon dioxide in it. 8: Plants make their own food using sunlight, carbon dioxide and water. 9: When a plant reproduces, it goes through stages of pollination, fertilisation and seed dispersal. The seed will then germinate and grow into a plant.	3: Forces act in pairs. Forces acting against each other are opposing. If opposing forces equal, they are balanced, and the object's motion will stay the same; this includes staying stationary. If opposing forces are unequal, they are unbalanced will change an object's speed, direction or shape. Friction is a force that will slow an object down.	more accurate measurements. Vertical Concepts: 2: The non-contact force of magnetism mean magnets can attract or repel other magnets and attract objects made of magnetic materials. 3: Friction is an example of a contact force.
Year 4	BIOLOGY Classifying organisms Introduction to classifying animals and their environment	BIOLOGY Food & digestion The human digestive system and food relationships in ecosystems	CHEMISTRY Particle model and states of matter States of matter in relation to particle arrangement	PHYSICS Sounds Relationship between strength of vibrations and volume of sound	PHYSICS Electricity Simple series circuits	CHEMISTRY Properties of materials Considering physical and chemical properties

Substantive knowledge:	Substantive knowledge:	Substantive knowledge:	Substantive	Substantive	Substantive
Classification refers to a	A food chain starts with a	The different substances	knowledge:	knowledge:	knowledge:
method used to place all	producer (usually a plant)	in their different forms	Sounds are made when	Electrical appliances	Physical properties
living things into groups.	who can produce its own	(solids, liquids and gases)	objects vibrate .	have a purpose and	are properties that we
Organisms can be	food. Organisms that eat	are all made of particles.	Sounds are transmitted	require electricity to	can measure or
classified in a number of	producers are called	The particles in the	from a source to a	work (e.g. toaster,	observe in the
ways.	consumers (primary and	different states of matter	detector.	kettle, fan, phone,	classroom.
Fish, amphibians, reptiles,	secondary).	are arranged differently.	Vibrations travel	game).	Physical properties
birds and mammals are all	A predator hunts prey to	In solids, the particles are	through a medium (e.g.	Electrical appliances	include electrical
vertebrates.	eat.	packed tightly together,	air, water) to the ear.	should be switched off	conductivity; melting
Vertebrates have	A food web shows the	they vibrate slowly, and	Vibrations enter the	when not in use.	and boiling points;
endoskeletons.	transfer of energy	are unable to move away	ear, our inner ear	A lamp in a circuit will	thermal conductivity;
Vertebrates can be	between different	from their neighbours.	vibrates and we hear	only light if there is a	being malleable;
grouped in a number of	organisms (include water	In liquids, the particles	them as sound.	complete circuit.	windproof; hard/soft;
ways based on their	as well as land organisms).	are close together but	Vibrations are passed	A complete circuit must	and magnetic.
characteristics, e.g.	An ecosystem is made up	can slide past each other.	on from one particle to	have at least one cell	Energy will be
warm/cold blooded; or	of all organisms living in an	In gases, the particles are	the next, and so it	and have all the	transferred from
physical features like fur,	area and the non-living	spread out and can move	travels more easily	components connected	places with a higher
beak, wings etc.	features of the	freely.	when particles are	in a loop. If it is missing	temperature to places
Invertebrates can be	environment.	Substances can change	closer together (solids	any of these things it is	with a lower
grouped based on their	There are four main types	from one state of matter	and liquids).	an incomplete circuit .	temperature.
characteristics as snails	of teeth: incisors , canines ,	to another.	Sound cannot travel in a	Switches complete or	Thermal conductors
and slugs ; worms ; spiders	pre-molars and molars.	The process that changes	vacuum.	break a circuit.	allow energy to be
and insects.	They each have a different	a substance from solid to	The volume of a sound	A short circuit can be	transferred through
Invertebrates can be	purpose.	a liquid is called melting .	is how loud or quiet it is.	created by accident by	them easily when they
placed into groups based	Herbivores, carnivores	The process that changes	Louder sounds are	connecting just the wire	are heated. Metals are
on their skeletons;	and omnivores have teeth	a substance from liquid	caused by bigger	to the cell in a circuit.	good thermal
endoskeletons,	types in different	to a gas is called	vibrations, smaller	They can be dangerous.	conductors.
exoskeletons, or	proportions.	evaporation.	sounds are caused by	Components include	Thermal insulators do
hydrostatic skeletons.	Babies' teeth develop	Evaporation is different	smaller vibrations.	wire, lamp, buzzer,	not allow energy to be
Plants can be grouped into	before they are born,	from boiling.	The pitch of a sound is	motor or switch.	transferred through
flowering and non-	deciduous (milk) teeth	The process that changes	how high or low it is.	Materials that allow	them easily when
flowering plants.	push through the gums	a gaseous substance to	Sounds get fainter as	electricity to pass	heated. Thermal
A species is a group of one	when a child is about 6	liquid is called	the distance from the	through them easily are	insulators include
type of organism.	months.	condensation.	sound source increases.	called electrical	trapped air, plastic and
Individuals in this group	Deciduous teeth fall out	The process that changes	Different animals hear	conductors.	wood.
can breed with each other	from the age of 5 and are	a liquid substance to solid	different sounds.	Metals and water are	Elasticity is a physical
to produce offspring that	replaced with adult teeth.	is called freezing.	Humans' hearing	good conductors of	property. Elastic
can go on to reproduce.	Bacteria can cause tooth	Substances change state	changes as we age.	electricity.	materials can stretch
Protecting biodiversity is	decay.	at different		Materials that do not	and then return to its
important as the different		temperatures.		allow electricity to pass	original form.

species depend on each	Animals and plants need to	Different substances are	Disciplinary	through them easily are	Chemical properties
other to provide food,	digest food to transfer	different states at room	knowledge:	called electrical	are properties that
shelter and many other	energy from it.	temperature.	Investigate the tautness	insulators.	scientists need
resources. This is called	The digestive system is the	The water cycle relies on	on pitch using an app	Plastic, rubber, wood,	specialist equipment
interdependence.	group of organs that help	evaporation and	M&O: Gather	glass, paper and fabric	to measure.
Many things threaten	your body digest food.	condensation. Water is	information using a	are electrical insulators	Chemical properties
biodiversity, including the	Digestion in humans is	collected in the oceans	data logger (e.g. sound		include how easy a
loss of habitats (from	chemical and mechanical.	from rivers; it evaporates	meter app; heart rate	Disciplinary	substance is to set on
global warming, building	Chemical and mechanical	and then condenses to	app).	knowledge:	fire (flammability) or
and extracting resources),	digestion takes place in the	form clouds; it then		Investigate which	how poisonous
agriculture, and hunting.	mouth (saliva and	precipitates, and the	Vertical Concepts:	materials are electrical	something is (toxicity).
	chewing).	cycle begins again.	2: Sound comes from	conductors and which	As we learn more
Disciplinary knowledge:	Food travels down the		objects that vibrate and	are electrical insulators	about a substance's
Exploring classification	oesophagus from the	Disciplinary knowledge:	can be detected at a	A&P: Draw diagram of	properties, we may
debates (e.g. duck-billed	mouth into the stomach .	Investigate the effect of	distance from the	the investigation.	decide to stop using it
platypus)	In the stomach , mechanical	temperature on the rate of	source, because the air	R&P: Present	to make certain
A&P: Identify scientific	(churning) and chemical	evaporation	or other material	information in a written	objects (e.g. lead in
evidence that has been	digestion takes place to	A&P: Set a hypothesis to	around is made to	format.	pencils is toxic;
used to support or refute	break down food further.	test.	vibrate. Sounds are		asbestos is a good
ideas.	Food is further broken	A&E: Scientists use	heard when the	Vertical Concepts:	insulator but is toxic.
Use a classification key to	down by enzymes	models to help explain	vibrations in the air	4: A cell in a complete	
sort organisms	(chemical digestion) in the	their ideas.	reach our ears.	circuit can make a bulb	Disciplinary
R&P: Use a classification	small intestines where		11: Humans with	light or buzzer sound.	knowledge:
key to identify an object.	most of the nutrients are	Vertical Concepts:	hearing loss may use	This will not happen	Investigating the
Draw a classification key to	absorbed.	1: If a material could be	closed captions, hearing	without a cell.	physical properties
identify four animals, and	Water is absorbed in the	divided into smaller and	aids and/or sign		(thermal conductivity;
then several leaves (using a	large intestine, leaving	smaller pieces, it would	language.		malleability;
magnifying glass)	behind the faeces .	be found to be made of			transparency;
R&P: Draw a dichotomous	Faeces are mainly made of	particles, which smaller			magnetism; electrical
classification key to help	food we could not digest;	than can be seen even			conductivity etc.) of
others identify an object.	faeces are stored in the	with a microscope. These			materials, using own
	rectum and pass out of the	particles are not in a			knowledge or setting up
Vertical Concepts:	human body via the anus.	material; they are the			comparative tests.
9: A species is a group of		material. The particles of			Conduct secondary
one type of organism.	Disciplinary knowledge:	a substance are arranged			research to identify an
Individuals in this group	Explain the digestion	differently when it is			object that was once
can breed with each other	process using a prop to	solid, liquid or gas.			made of one material
to produce offspring that	others in school or at home	5B: The water cycle			but, when new
can go on to reproduce.	R&P: Present information	involves evaporation of			evidence showed other
	orally using a prop or	water from oceans and			chemical or physical
	demonstration.	condensation of water,			properties, are now

Year	5 CHEMISTRY Separating mixtures Identifying and separating mixtures; reversible and non-reversible changes	R&P: Drawings can be labelled and annotated. Vertical Concepts: 4 & 8: The arrows in a food web show where energy is being transferred from and to. 11: Bacteria are tiny living things. Some are useful for humans, and some can cause diseases. Bacteria can cause tooth decay. BIO / CHEM / PHYSICS Energy Introducing the concept of energy stores and energy transfers; relate this to prior knowledge	which falls as precipitation. BIOLOGY Life cycles Life cycles of a mammal, amphibian, insect, bird, and some reproduction processes	BIOLOGY Human development Human development to old age	BIOLOGY Human development Human development to old age	made of new materials (e.g. asbestos insulation; lead pencils; plastic bottles).Vertical Concepts: 1: Properties of materials can be physical (such as hardness) or chemical (such as toxicity).11: Some substances are toxic; this means they can be poisonous. Humans and other organisms need to avoid these to stay healthy.PHYSICS Earth and space Movements of planets and the Moon, and relationship to day and night
	Substantive knowledge: A pure substance is one that contains only one type of particle. A mixture is two or more different substances, e.g. air, steel. Mixtures can be made of two gases (e.g. air), two solids (e.g. steel), two liquids (e.g. squash and water), or a liquid and a solid (e.g. salt water). A solution is made when one substance dissolves in another substance called a	Substantive knowledge: Energy is needed by both living and nonliving things. Energy can be transferred from one store to another store. When energy is removed from one store and is transferred to another store, the amount of energy in the first store goes down and the amount of energy in the second store goes up.	Substantive knowledge: A cell is the smallest building block of living things. All organisms are made of cells. There are lots of different types of cell, which each have different purposes. Plants and animals look similar to their parents in many features because information is passed from one generation to the next. This	Substantive knowledge: The human life cycle goes through the same stages as those for other animals: fertilisation, gestation, growth. Fertilisation in most humans is internal, but it can happen externally (in vitro fertilisation - IVF - which means 'in glass' fertilisation). The human life cycle: embryo, foetus, infant,	Substantive knowledge: Force is measured in newtons (N). Gravity is a non- contact force that pulls all objects towards each other. The greater the mass of the object, the greater the gravitational pull around it. Gravity is most commonly experienced as the pull of the Earth (and all	Substantive knowledge: The universe is made up of many galaxies. Our galaxy is called the Milky Way. The Milky Way is made up of lots of solar systems. Our solar system consists of a star (Sun), planets (which orbit a star), satellites (which orbit planets), and other bodies including asteroids, meteoroids,

solvent. A solution is a	Energy is not used up; it is	information comes from	child, adolescent, adult,	objects on it) towards	meteors and
mixture; it is made of more	iust moved around from	the parents' genome .	senior.	each other.	meteorites. The Sun is
than one type of particle.	store to store.	Sexual reproduction	Human are viviparous	The Earth's	at the centre of the
The substance that	Energy stores are needed	involves two parents -	and a foetus develops	gravitational pull is so	solar system - the
dissolves is called the	for something to happen.	usually male and female -	inside the mother (or	large that all objects -	heliocentric model.
solute. The substance that	Energy resources such as	creating a new organism	surrogate mother).	regardless of how	The sun, planets and
it dissolves in is called the	oil, gas, coal, food and	by mixing their genomes .	A human embryo is	heavy they are - are	moons are
solvent.	other fuels can be	Sexual reproduction	considered a foetus at	pulled towards Earth at	approximately
A substance that will	depleted.	begins with fertilisation	the end of the 8th week	the same rate.	spherical bodies.
dissolve in a solvent is	Fossil fuels and batteries	of an egg, which mixes	of pregnancy.	Mass is a measure of	Planets orbit the Sun
soluble in that solvent. If it	are examples of chemical		The gestation period	how much matter	in the same plane ;
	•	the genes from two	for humans is 40 weeks.		
does not dissolve, it is	energy stores.	parents. Fertilisation can		something is made	moons orbit planets.
insoluble in that	Energy can be stored	be internal or external.	The bigger the animal,	from, which is	They are held in their
substance.	thermally in the	After an egg is fertilised,	the longer the gestation	measured in kg (or	orbits by gravity .
When no more solute can	surroundings.	an embryo will develop.	period.	equivalent). The mass	The Earth takes
dissolve in the solvent, the	Different foods (fuels)	Embryos develop inside	A foetus is considered a	of an object is always	365.25 days to orbit
solution is saturated .	store more chemical	the body in the gestation	baby when it is born.	the same.	the sun (one year).
The higher the	energy per unit mass than	period for viviparous	Cognitive, physical and	Weight is a force, it is	Every four years our
temperature of the	others.	animals. Embryos	social and emotional	measured in newtons	Earth year is one day
solvent, the greater the	The Sun is an example of a	develop outside the body	development takes	(N).	longer, this is called a
mass of solute that can be	chemical energy store.	in eggs for oviparous	place at the greatest	The weight of an object	leap year, this year
dissolved.	In a food chain, an amount	animals.	rate during infancy.	will differ depending on	accounts for the four
Two solids can be	of energy from the Sun (a	Viviparous animals are	During puberty ,	the force of gravity.	0.25 days.
separated by using	chemical store) is	born , oviparous animals	adolescents' bodies	Air resistance is a	There are eight
magnets or filters (e.g.	transferred to the plant by	hatch from eggs, plant	change, e.g. pubic hair,	frictional force that	planets (M, V, E, M, J,
sieve).	light. The energy is then	seeds germinate.	voice deepen, hips	acts between air and a	S, U and N). Each
A solid and a liquid can be	transferred along the food	Almost all mammals are	widen.	moving object to slow it	planet has different
separated by using	chain as the different	viviparous; all birds and	Primary aging of adults	down.	characteristics, e.g.
filtration (if the solid is	organisms are eaten.	most amphibians are	occurs naturally as our	Surface area is the area	temperature; time
insoluble) or evaporation	Not all the chemical energy	oviparous.	bodies get older (e.g.	that is facing the	taken to orbit the sun;
(if the solid is soluble).	stored in an organism is	Amphibians and most	slower reaction time,	direction the object is	number of moons;
A reversible change is a	passed to the next	insects undergo	reduced hearing).	travelling in. The larger	size.
change that can be	organism in a food chain	metamorphosis.	Secondary ageing	the surface area of an	The Earth rotates on
undone, where the original	because a) not all of the	Life cycle of:	relates to	object, the greater the	its axis once every 24
substances can be	organism is eaten and b)	hedgehog: internal	environmental factors,	air resistance.	hours, so only half of
recovered.	some energy is transferred	fertilisation, gestation,	like poor diet, not	Water resistance is a	the Earth is facing the
An irreversible change is a	from the organism to the	hoglet, adult.	enough exercise,	frictional force that	Sun at any one time;
change that cannot be	thermal store of the	peregrine falcon: internal	smoking etc.	acts between water and	this creates night and
undone, where the original	surroundings.	fertilisation, incubation	There are ages where	a moving object to slow	day.
substances cannot be	In a circuit that has a	in eggs, hatchling,	humans at their peak	it down.	The Earth's rotation
recovered.	cell/battery, the	fledgling, adult.	for different things (e.g.		means that the sun

Disciplinary knowledge:	cell/battery is the chemical store of energy.	frog: external fertilisation, frogspawn,	reproduction, running etc.).	Levers, pulleys and gears allow a smaller	appears to 'rise' in the east and 'set' in the
Investigate the effect of	In a circuit, energy is	tadpole, adult frog	Different cultures	force to have a greater	west.
temperature on the mass of	transferred electrically to	(metamorphosis).	around the world have	effect. Examples of	The Moon orbits the
the solute that can be	the device in the circuit,	ladybird: internal	different perceptions	levers, pulleys and	Earth in 28 days and,
dissolved.	but the device does not	fertilisation, eggs hatch,	around the life cycle	gears include	during this time, the
Separate a mixture	store the energy; the	larva, pupa, adult.	and ageing.	wheelbarrows, lifts,	sun shines on different
including coarse sand,	device changes the way	Most plants have both	Draw a scatter graph to	bicycle gears, in	parts of it. This creates
water, salt and lumps of a	the energy is transferred .	male and female parts.	suggest whether there is	construction.	phases of the Moon,
magnetic material.		The male part of the	a relationship between	Levers consist of a	including new moon ,
	Vertical Concepts:	plant is called the	animal size and length of	beam and a fulcrum	crescent, quarter
Vertical Concepts:	4: Many processes and	stamen , made up of the	gestation period	(pivot). Effort lifts a	moon, gibbous moon
1: A pure substance is one	phenomena are explained	anther and filament, and	A&P: Scientists look for	load. The greater the	and full moon.
that contains only one	in terms of energy	the anther produces	patterns in data to try	distance from the effort	Space is a vacuum ,
type of particle. A mixture	exchanges. Energy cannot	pollen grains.	to identify correlations.	to the fulcrum, the less	which means there are
is created when two or	be created or destroyed.	The female parts of the	R&P: Scatter graphs can	effort is required to	no particles.
more substances are	When energy is	plant are the ovary	help you decide if there	move the load.	The Earth's Moon has
mixed. The two types of	transferred from one	(which produces the	is a relationship	Upthrust is an upwards	less mass, so its
particle are mixed	object to others, the total	female sex cells which	between two variables.	force that a liquid (and	gravitational force is
together, but the particles	amount of energy in the	are contained in the		a gas) exerts on an	less.
themselves stay the same.	universe remains the same;	ovule) and the stigma	Disciplinary	object floating in it.	Geography: Vertical
5B: Air is a mixture of lots	the amount that one object	which collects pollen.	knowledge:	If upthrust is equal to	lines called meridians
of different gases,	loses is the same as the	Asexual reproduction	Discuss one aspect of IVF	the weight of an object	split the Earth into 24
including oxygen and	other objects gain. Two	does not involve sex cells	that is appropriate to	it will float.	different time zones.
carbon dioxide.	examples of energy stores	or fertilisation. Only one	your class (e.g. who in the		Geography: Each time
	are thermal stores and	parent is needed and	world has access; post	Disciplinary	zone is x hours ahead
	chemical stores of energy.	offspring are	code lottery within the	knowledge:	or behind London, at
	8: Energy is transferred to	(genetically) identical to	UK)	Investigate how much	the Prime Meridian.
	the Earth by light. When	the parent and each	A&E: Some people may	force is required to pull	Geography: Some
	making their own food,	other.	agree or disagree with	objects over different	countries choose to
	plants transfer some of this	Potatoes develop tubers	the use of some	<i>surfaces</i> M&O: Measure force	operate in multiple
	energy to their chemical	and daffodils have bulbs ,	scientific discoveries.		time zones.
	store. As other organisms	which will grow to be	Vertical Concenter	using a Newtonmeter.	Dissipliner
	eat these producers, some	identical copies of the	Vertical Concepts: 11: Healthy	Investigate how surface	Disciplinary knowledge:
	energy in this chemical	plant.	,	area affects air	
	energy store is transferred.	Disciplinary knowledge:	development includes cognitive, physical,	resistance, and how shape affects water	Look for patterns between a planet's
		Using images, text and the	social and emotional	snape affects water resistance	distance from the Sun
		internet to research	development. Most of	R&P: Line graphs can be	and its temperature
		internal and external	this happens during	used when data is	and size.
					unu 5126.
		fertilisation, and	infancy and childhood.	continuous; bar charts	

	viviparous and oviparous	Ageing happens	can be used when data	Consider how the
	organisms	naturally, and can be	is discrete.	number of planets that
		sped up by	A&E: Make judgements	humans consider to be
	Vertical Concepts:	environmental factors	on the accuracy of the	planets has changed
	7: A cell is the smallest	like smoking. Some	data.	over time.
	building block of living	adults are unable to		A&E: Science is never
	things. All organisms are	become pregnant. IVF	Vertical Concepts:	'complete' and
	made of cells. There are	and other treatments	2: The non-contact	scientists are always
	lots of different types of	can be used.	force of gravity pulls	working to make
	cell (e.g. sex cells), which		objects towards the	models more accurate
	each have different		centre of the Earth.	or to discover new
	purposes.		3: There is gravitational	explanations.
	9: An organism's genome		force between all	
	is the information that		objects, but it is only	Vertical Concepts:
	controls how that		felt when one or more	3: The downward
	individual organism will		of the objects has a	force of gravity on an
	develop. In sexual		very large mass. The	object on the Moon is
	reproduction, two		greater the mass, the	less than that on Earth
	parents contribute to the		greater the	because the Moon has
	formation of offspring.		gravitational force.	less mass on Earth.
	They each pass down half		Objects on Earth are	5B: There is less and
	their genome through		pulled to the centre of	less air further away
	specialised cells called		the Earth because the	from the Earth's
	sex cells. The two halves		Earth's mass and	surface; space is a
	are combined during		therefore gravitational	vacuum.
	fertilisation. While it		force is much larger	6: Our Sun is one of
	inherits genetic		than that of the objects.	many stars that make
	information from both			up the Universe. The
	parents, the offspring's			distances between us
	genome is distinct, which			and the bodies in solar
	means the offspring is			system is huge, and
	not identical to a parent.			even bigger in the
	Asexual reproduction			Universe.
	involves only one parent.			
	In this process, the			
	offspring's genome is an			
	exact copy of the			
	parent's genome. The			
	offspring is identical to			
	the parent.			
	I	I	I	

Year 6	PHYSICS Electricity Investigating variations in series and parallel circuits, and how electricity is generated	PHYSICS Electricity Investigating variations in series and parallel circuits, and how electricity is generated	PHYSICS Light How light travels and is reflected, and how this allows us to see	BIOLOGY Further classification Further classification of organisms based on characteristics	BIOLOGY Functions of the human body Human circulatory system; transport of nutrients within the body	CHEMISTRY Physical and chemical changes Identifying physical and chemical changes
	Substantive knowledge: There are recognised symbols for cell, lamp, buzzer, motor, and switch. Wires are represented with straight lines. As long as batteries have the same voltage, the size of the battery does not affect the brightness of the lamp/loudness of the buzzer (though the smaller batteries will not last as long as the larger ones). Adding more cells in the circuit increases the voltage in a circuit makes the lamp in the circuit get brighter or the buzzer get louder. More than one lamp can be put into one circuit. They can be placed in series or in parallel. In a series circuit, the lamps are placed in a continuous loop. In	Substantive knowledge: Variation occurs within and between species. Variation can be environmental or genetic, or a mixture of both. Genetic variation happens randomly through the mixing of genomes in sexual reproduction. Some variation is advantageous to the organism in their environment; sometimes it is disadvantageous; and sometimes it gives no advantage/disadvantage. An organism with advantageous traits are more likely to survive and reproduce, passing those traits to the next generation. This is called natural selection. These advantageous traits - adaptations - can be physiological, structural and behavioural.	Substantive knowledge: When light meets an opaque object, some of the light is reflected and some of it is absorbed. Shadows have the same shape as the objects that cast them because light travels in straight lines. The size and shape of shadows behind an opaque object can be explained using ray diagrams. Objects emit (give out) or reflect light into the eye. We see things because light travels from light sources to our eyes, or from light sources to objects and then to our eyes Objects would be invisible if they did not reflect light. The eye is made of many parts: the pupil is the circular black hole in the	Substantive knowledge: Invertebrates can be grouped based on their characteristics as poriferans (sponges) cnidarians, echinoderms, molluscs, annelids, platyhelminths and arthropods. Arthropods can be grouped into 4 sub- groups: spiders, insects, crustaceans and myriapods). Plants can be grouped into moss, ferns, conifers and flowering plants. Fungi are different to plants and animals. They cannot make their own food (like animals) but do not move (like plants). Micro-organisms are organisms that are so	Substantive knowledge: Living things move, reproduce, are sensitive to their surroundings, grow, respire, excrete, and need nutrition (MRS GREN). Respiration provides the energy needed for organisms to function. Oxygen and glucose (a sugar) are needed by cells for respiration. Carbon dioxide is a waste product of respiration and needs to be excreted. Blood carries oxygen, glucose, nutrients, and carbon dioxide to and from cells around the body. The heart is a muscle that pumps the blood through the blood	Substantive knowledge: A mixture is two or more substances that are mixed but not chemically joined together. Distillation is a separating technique that can separate a solvent from a solution. It relies on evaporation and condensation. Chromatography is a separation technique in which a mixture is dissolved into a solvent, and the components of the mixture are carried by the solvents at different rates. A chemical change is a change where a new substance is formed. A chemical change has usually taken place if:
	parallel , the lamps are placed in separate loops that both connect to the cell.	Over many generations, the species will evolve so that all organisms have this adaptation/advantageous trait.	center of the eye, the iris is the coloured part of the eye that surrounds the pupil, and the lens is a	small that we cannot see them with our eyes alone. Some fungi are microorganisms (e.g.	The heart pumps deoxygenated blood to the lungs, where oxygen is transferred to it, and it flows back to	gas bubbles appear; a new solid appears; it changes colour; or changes temperature.

					1
Connecting lamps in	Homo sapiens originated	structure found behind	yeast), but not all are	the heart. The heart	A physical change is
parallel means that if one	in many parts of Africa.	the pupil.	(e.g. mushrooms).	pumps oxygenated	where the substance
lamp burns out the other	Fossils provide evidence	The pupils allow light to	Bacteria and viruses	blood to the rest of the	changes its properties,
will stay on and switches	for evolution, because they	enter the eye.	are microorganisms.	body, where the oxygen	but it does not become
can be used to turn each	show how organisms have	The iris controls how	Some bacteria can	is transferred to the	a different substance.
lamp off independently.	changed over time.	much light enters the eye	cause disease in other	organs/muscles and	Some chemical
Many of the appliances	Scientists involved in the	by changing the size of	organisms.	carbon dioxide is	changes are
used in the home do not	development of	the pupil.	Some bacteria are	transferred to the	irreversible, (e.g. cook
use batteries they use	evolutionary biology	The lens helps to focus	helpful for other	blood. Deoxygenated	an egg, rusting iron),
mains electricity.	include Al-Jahiz, Charles	the light rays entering	organisms (e.g. those	blood then travels back	but some can be
Mains electricity is	Darwin, Alfred Wallace,	the eye.	that help break down	to the heart to begin	reversed.
generated in a power	Mary Anning and Dr	White light, which comes	food in our digestive	the process again.	Most physical changes
station and transferred to	Danielle Lee.	from most light sources	system) and those that	Glucose and nutrients	are reversible (e.g.
our homes by overhead		we use in the classroom,	form part of a symbiotic	are absorbed by the	water to ice), but some
cables. Power stations can	Disciplinary knowledge:	contains all the colours of	relationship.	blood along the small	are not (e.g. crack an
use both renewable and	Sort variations within	the visible spectrum	Use and draw	intestine and	egg, turn wood into
non-renewable sources of	species in a Venn diagram,	(red, orange, yellow,	classification keys to	transported to cells.	sawdust).
energy to generate	based on whether they are	green, blue, indigo,	help classify	Arteries carry blood	Chemical reactions
electricity.	genetic, environmental or a	violet).	invertebrates and plants	away from the heart.	can be summarised
A non-renewable energy	mixture of both.	When a light meets a	Research the harmful	Arteries have thick	using word equations.
resource is one that is	Identify how evidence of	surface, some colours are	effects that bacteria can	walls because they	Word equations show
used much faster than it is	fossils has been used to	absorbed and some are	have on humans and	carry blood from the	the names of the
created. Fossil fuels take	support to change the	reflected. We see the	other organisms, and	heart which is at a high	chemicals reacting and
millions of years to form	theory of the evolution of	colour(s) that are	present this information	pressure. Blood is being	the names of the
but minutes to burn, so we	Homo sapiens.	reflected.	in a written format.	pumped through very	products formed.
will run out. Burning fossil		Objects appear black if	7: Micro-organisms are	quickly. Arteries mostly	A combustion reaction
fuels to transfer electrical	Vertical Concepts:	they absorb all the	organisms that are so	carry oxygenated	occurs when a fuel is
energy is a non-renewable	10: Variation exists within	colours in white light and	small that we cannot	blood.	heated and reacts with
energy source.	species, caused by genetic	reflect none. Objects	see them with our eyes	Veins carry blood back	oxygen. A product of a
Renewable energy	and environmental factors.	appear white if they	alone	to the heart. They	combustion reaction is
resources quickly	Living things are found in	reflect all the colours in		mostly carry	carbon dioxide.
replenish themselves,	certain environments	white light, and absorb		deoxygenated blood.	Combustion is an
meaning that we can use	because they have the	none.		Arteries branch into	irreversible chemical
them again and again and	features that enable them	Many problems with our		smaller blood vessels	reaction.
we will not run out. Wind,	to survive there. This	vision are caused by		called capillaries , which	Rust is an irreversible
solar, geothermal and	adaptation to their	parts of the eye that are		are very small and	chemical reaction. It
hydrological power are all	environment has come	the not the right shape or		supply our cells with	requires iron, water
examples of renewable	about because of the small	size, or that have become		oxygen, glucose and	and oxygen
energy resources.	differences that occur	cloudy. Many of these		nutrients. Capillaries	
Coal, oil and gas are all	during reproduction,	problems can be		collect carbon dioxide	Disciplinary
used to generate	resulting in some	corrected through			knowledge:

electricity. The store of	individuals being better	surgery or prescription	from cells and merge	Use a Carroll diagram
chemical energy in the fuel	suited to the environment	glasses.	into veins.	to classify changes as
is transferred electrically	than others. In the	People living with sight	The heart rate is how	
				physical/chemical and reversible/irreversible
to the appliances that we	competition for materials	loss or blindness may use	quickly the heart	
use in the home.	and food, those that are	long canes or guide dogs	pumps. It is usually	Carry out changes and
D ¹ · · · · · · · · · · · · · · · · · · ·	better adapted will survive	when outside, talking	measured in beats/min.	identify whether the
Disciplinary knowledge:	and are more likely to pass	books or Braille , and	Muscles need more	change created is
Three different enquiries,	on their adapted feature to	different devices in the	oxygen when they are	physical/chemical and
where pupils will plan the	their offspring. Fossils are	home.	being used in exercise,	reversible/irreversible
most appropriate type of	evidence of evolution.	On a flat surface, all light	so the heart rate	A chemical change is
investigation and how		meeting a surface from	increases.	where a new
they should present their		one direction will be	Being healthy means	substance – that is
results:		reflected in the same	being in a state of	made of a different
Investigating the effect of		direction. This is known	physical, mental and	type of particle – is
increasing voltage on the		as specular reflection.	social wellbeing and	formed.
volume of a buzzer or the		On a rough surface, light	free from disease.	
brightness of a lamp		will be reflected in all	Diet and exercise can	
Investigating the effect of		directions. This is known	have a positive effect	
changing the number of		as diffuse reflection.	on our bodies. Other	
components in a circuit on		Specular reflection	lifestyle choices impact	
the volume of a buzzer		between mirrors allow us	our health.	
R&P: Decide which graph		to see the objects that do	A drug is a substance	
is most appropriate for the		not directly reflect light	that, when taken into	
enquiry.		into our eyes (e.g.	the body, has an effect	
		periscope).	on it. Some drugs	
Vertical Concepts:			(medicines) are helpful,	
4: Energy resources can be		Disciplinary knowledge:	and some are only	
renewable (such as wind,		Draw ray diagrams to	harmful. All drugs are	
solar, geothermal and		show how light travels and	harmful when taken in	
hydrological) or non-		how shadows are formed	the wrong quantities.	
renewable (such as fossil			Tobacco smoke	
fuels).		Vertical Concepts:	contains nicotine, tar	
		11: Visual impairments	and carbon monoxide.	
		include long and short	These have a damaging	
		sightedness, colour vision	effect on the body.	1
		deficiency, and blindness.	chect on the body.	
		Some of these can be	Disciplinary	
		corrected, and some	knowledge:	
		-	Investigate the effect of	
		people with visual	exercise on heart rate	1
		impairments will use	exercise on neart rate	1
	l	Braille, magnifying		

1	J. •		MCO: Planning to tall
	devices, car	es and/or	M&O: Planning to take
	guide dogs.		multiple readings
			allows anomalous data
			to be identified and
			enables a mean to be
			calculated. Repeats
			show if our data is
			repeatable.
			A&E: Calculating the
			mean can be used as a
			method of analysing
			data.
			Research effects of
			smoking on the human
			body, and how our
			scientific understanding
			has changed over time,
			including in the current
			day.
			Vertical Concepts:
			4: All organisms respire.
			7: Respiration takes
			place in cells.
			8: Living things move,
			reproduce, are
			sensitive to their
			surroundings, grow,
			respire, excrete, and
			need nutrition (MRS
			GREN).
			11: Being healthy
			means we are in a state
			of physical, mental and
			social wellbeing and are
			free from disease. Some
			drugs can help us and
			some can harm us
			(particularly in the
			wrong quantities).