Mathematics

Intent

Mathematics is a creative and highly inter-connected discipline that has been developed over centuries, providing the solution to some of history's most intriguing problems. It is essential to everyday life, critical to science, technology and engineering, and necessary for financial literacy and most forms of employment. A high-quality mathematics education therefore provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject.

At Longthorpe Primary School, we strive to develop confident and curious mathematicians who have a positive self-belief and are willing to take risks, understanding that mistakes contribute to learning opportunities and therefore success. All of our staff aim to inspire and enthuse our mathematics learners and celebrate their perseverance and foster a positive growth mind-set. In class, our active learners are encouraged to collaborate through effective communication and exacting vocabulary, allowing them to reason and explain their systematic thinking. To inspire confident mathematicians, we aim to develop pupils' number sense so that they can manipulate numbers, make links with new learning and spot patterns. Our mathematics curriculum has been designed to enable our pupils to:

- become fluent in the fundamentals of mathematics, so that they develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language.
- solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Implementation

At Longthorpe Primary School, we use the mastery approach to learning and teaching maths - utilising the Primary Advantage Maths (PAM) tool. We have chosen this tool as it has been devised by a specialist maths team and the backbone of this curriculum is the spiralling of maths strands, where each revisit builds on prior learning in small but stretching steps resulting in coherent learning that sticks. The mastery approach is characterised by the belief that by working hard all pupils can succeed at maths - and that maths can and should be an inclusive subject for all. At the core of our curriculum is the 'Concrete - Pictorial - Abstract' (CPA) approach; learning that is supported and scaffolded with concrete manipulatives or pictorial representations to ensure pupils gain a depth of mathematics understanding. Pupils move onto abstract recording when they are ready (e.g., the standardised method of long division) so they have firm conceptual foundations around the area of maths being taught.

Through our curriculum, pupils gain a rapid accurate recall of number facts after explicit input from teachers and a variety of fluency practise tasks. Where possible, maths units are linked to real life and purposeful processes and outcomes so that our pupils can see how relevant maths is in the 'real world'. In our classes, learners feel safe to make mistakes and get stuck because we ensure there is a strong culture of error. Teachers will often pre-teach potential misconceptions and advise on barriers to learning and they will explicitly teach subject specific vocabulary. The teaching and learning expectations across each maths module include:

- Collaborative learning with frequent dedicated pupil talk time.
- Conceptual variation through mathematical structures (concrete and pictorial).
- Procedural variation so that pupils use patterns and adjustments for efficient calculation.
- Coherence and continuity so the same methods are taught and built on throughout the mathematics curriculum.

The PAM curriculum ensures that deliberate links are made between differing strands of maths so that these strands are not taught in isolation. For example, the teaching of the concept of 'measure' incorporating addition and subtraction skills. Additionally, the DfE 'Ready to Progress' objectives
are woven into our PAM curriculum and are taught throughout the year. This ensures that priority is given to the key objectives which are needed in each year to allow a secure foundation for the next year's learning.

At the beginning of a mathematics unit, a diagnostic activity is carried out to illicit prior knowledge and any misconceptions being displayed. Any misconceptions are then woven into the unit planning to ensure they are addressed within teaching. The first session is usually an exploration session, which focuses on key vocabulary for the unit and key concepts, which are explored with a range of manipulatives. Talk partners are a fundamental element of the sessions where discussion is encouraged and there is an expectation that all pupils will be able to share their ideas about their learning. As the unit progresses, learning will be deepened for those who are ready to move on through reasoning, application, explanation and problem-solving activities. They may also be seen as 'experts' supporting and modelling' their understanding for pupils who need it. As part of the mastery approach, scaffolding and support will be offered to those pupils who need it. For example, the continuation of the use of manipulatives or sentence stems. Most pupils with SEND will access the maths curriculum with their peers.

Times Tables

When introducing a new times table fact, a 2-week approach is taken. Initially counting forwards and backwards along a counting stick and seeing the relationship between the multiples. Once the majority are confident with this, the facts are displayed as a mountain, with safe zones created as their 'go-to' facts. Multiplication and division are taught simultaneously at this time. When pupils are confident and able to explain their strategies, speed is developed with 'practise' sessions and other facts are linked with scaling up and scaling down questions for those who are able. 'Times Table Rockstars' is also being used to allow pupils to practise their fluency in school and at home.

Calculating Mentally

Number bonds are a key focus throughout the school. All pupils from EYFS to Year 6 have half-termly targets to work on. We know that for a proportion of our pupils, there are gaps in their number foundations and therefore struggle to see links to new learning. For example, adding 3 multiples of a hundred is difficult if you are not able to fluently add 3 single digit numbers. Number Talks (Sherry Parrish) have been introduced across the whole school and are continuing to be developed. This allows our pupils to be flexible thinkers and expert communicators as well as building computation skills and reinforcing number sense. The pupils are expected to talk about the range of strategies rather than seeing just one answer.

The Journey of a Mathematician at Longthorpe

By the end of the EYFS, pupils will:

- Have a deep understanding of number to 10 , including the composition of each number.
- Subitise (recognise quantities without counting) up to 5 .
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.
EYFS
- Verbally count beyond 20, recognising the pattern of the counting system.
- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity.
- Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally. count reliably with numbers from one to 20.

By the end of KS1, pupils will:

- Develop confidence and mental fluency with whole numbers, counting and place value. This will involve working with numerals, words and the four operations, including with practical resources.
- Develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary.
- Describe and compare different quantities such as length, mass, capacity/volume, time and money.
- Know the number bonds to 20 and be precise in using and understanding place value.
- Read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at KS1.

By the end of Lower KS2, pupils will:

- Become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value.
- Develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers.
- Develop their ability to solve a range of problems, including with simple fractions and decimal place value.
- Draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties, and confidently describe the relationships between them.
- Use measuring instruments with accuracy and make connections between measure and number.
- Have memorised their multiplication tables up to and including the 12-multiplication table and show precision and fluency in their work.
- Read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling.

By the end of Upper KS2, pupils will

- Extend their understanding of the number system and place value to include larger integers.
- Develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio.
- Develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation.
- Be introduced to the language of algebra as a means for solving a variety of problems.
- Consolidate and extend knowledge developed in number and link to geometry and measures.
- Classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them.
- Be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages.
- Read, spell and pronounce mathematical vocabulary correctly.

Units Overview

	Autumn 1 Autumn 2	Spring 1	Summer 1 Summer 2
Reception	Pupils will build on previous experiences of number from their home and nursery environments, and further develop their subitising and counting skills. They will explore the composition of numbers within 5. They will begin to compare sets of objects and use the language of comparison. Pupils will: - identify when a set can be subitised andwhen counting is needed - subitise different arrangements, both unstructured and structured, including using the Hungarian number frame - make different arrangements of numbers within 5 and talk about what they can see, to develop their conceptual subitising skills - spot smaller numbers 'hiding' inside larger numbers connect quantities and numbers to finger patterns and explore different ways of representing numbers on their fingers - hear and join in with the counting sequence, and connect this to the 'staircase' pattern of the counting numbers, seeing that each number is made of one more than the previous number	Pupils will continue to develop their subitising and counting skills and explore the composition of numbers within and beyond 5. They will begin to identify when two sets are equal or unequal and connect two equal groups to doubles. They will begin to connect quantities to numerals. Pupils will: - continue to develop their subitising skills for numbers within and beyond 5 , and increasingly connect quantities to numerals - begin to identify missing parts for numbers within 5 explore the structure of the numbers 6 and 7 as ' 5 and a bit' and connect this to finger patterns and the Hungarian number frame - focus on equal and unequal groups when comparing numbers - understand that two equal groups can be called a 'double' and connect this to finger patterns - sort odd and even numbers according to their 'shape' - continue to develop their understanding of the counting sequence and link cardinality and ordinality through the 'staircase' pattern - order numbers and play track games	Pupils will consolidate their counting skills, counting to larger numbers and developing a wider range of counting strategies. They will secure knowledge of number facts through varied practice. Pupils will: - continue to develop their counting skills, counting larger sets as well as counting actions and sounds - explore a range of representations of numbers, including the 10 -frame, and see how doubles can be arranged in a 10-frame - compare quantities and numbers, including sets of objects which have different attributes - continue to develop a sense of magnitude, e.g. knowing that 8 is quite a lot more than 2 , but 4 is only a little bit more than 2 - begin to generalise about 'one more than' and 'one less than' number within 10 - continue to identify when sets can be subitised and when counting is necessary - develop conceptual subitising skills including when using a rekenrek

	- develop counting skills and knowledge, including: that the last number in the count tells us 'how many' (cardinality); to be accurate in counting, each thing must be counted once and once only and in any order; the need for 1:1 correspondence; understanding that anything can be counted, including actions and sounds - compare sets of objects by matching - begin to develop the language of 'whole' when talking about objects which have parts		- join in with hearing the the counting	bal counts beyond 20, eated pattern within umbers		
Year 1	Number and place value (3 weeks) Addition and Subtraction (3 weeks)	Number and place value (3 weeks) Addition and subtraction (with money and measurement) (3 weeks) Geometry (properties of shape) (1 week)	Number and place value (1 week)	Geometry (position and direction) (1 week)	Number and place value (1 week)	Number and place value (1 week)
			Addition and subtraction (2 weeks)	Measurement (time) (1 week)	Addition and subtraction (2 weeks)	Addition and subtraction (2 weeks)
			Measurement (capacity and mass) (2 weeks)	Addition and subtraction (2 weeks)	Addition and subtraction (with money) (1 week)	Multiplication and division (2 weeks)
			Addition and subtraction (with capacity and mass) (1 week)	Fractions (1 week)	Geometry (properties of shape) (1 week) Statistics (1 week)	Fractions (1 week) Measurement (time) (1 week)

Year 2	Number and place value (2 weeks) Addition and subtraction (3 weeks) Measurement (time) (1 week)	Geometry (properties of shape) (1 week) Fractions (1 week) Multiplication and division (1 week) Statistics (1 week) Measurement (money) (1 week) Addition and subtraction (with money) (1 week)	Number and place value (1 (week) Addition and subtraction (2 weeks) Multiplication and division (2 weeks) Measurement (time) (1 week)	Measurement (length) (1 week) Addition and Subtraction (with length) (1 week) Multiplication and division (with length) (1 week) Fractions (1 week) Geometry (position and direction) (1 week)	Geometry (properties of shape) (1 week) Number and place value (1 week) Measurement (capacity and mass) (1 week) Addition and subtraction (with capacity and mass) (1 week) Multiplication and division (with capacity and mass) (1 week) Measurement (time) (1 week)	Measurement (length) (1 week) Four operations (with length) (2 weeks) Fractions (1 week) Statistics (1 week) Geometry (position and direction) (1 week) Four operations (with measurement) (1 week)
Year 3	Number and place value (2 weeks) Addition and subtraction (2 weeks) Multiplications and division (2 weeks)	Fractions, decimals and percentages (2 weeks) Geometry (1 week) Statistics (1 week) Measurement (volume and capacity)	Number and place value (1 week) Geometry (properties of shape) (1 week) Fractions, decimals and percentages (2 weeks)	Statistics (1 week) Measurement (money) (1 week) Four operations (with money) (1 week) Four operations (1 week)	Number and place value (1 week) Addition and subtraction (1 week) Multiplication and division (1 week)	Measure (volume and capacity) (1 week) Four operations (with volume and capacity) (1 week) Measure (length and mass) (1 week)

		(1 week) Measurement (length and mass) (1 week) Four operations (with measurement) (1 week)	Addition and subtraction (1 week) Multiplication and division (1 week)	Measurement (time) (1 week)	Fractions, decimals and percentages (3 weeks)	Four operations (length and mass) (1 week) Geometry (properties of shape) (1 week) Statistics (1 week) Measurement (time) (1 week)
Year 4	Number and place value (1 week) Addition and subtraction (2 weeks) Multiplication and division (2 weeks) Measurement (time) (1 week)	Fractions, decimals and percentages (2 weeks) Geometry (properties of shape) (1 week) Statistics (with addition and subtraction) (1 week) Measurement (length and mass) (1 week) Measurement (volume and capacity) (1 week)	Number and place value (1 week) Addition and subtraction (1 week) Multiplication and division (1 week) Fractions, decimals and percentages (2 weeks) Geometry (position and direction) (1 week)	Statistics (with addition and subtraction) (1 week) Measurement (money) (1 week) Four operations (with money) (1 week) Measurement (time) (1 week) Geometry (properties of shape) (1 week)	Number and place value (1 week) Addition and subtraction (1 week) Multiplication and division (1 week) Fractions, decimals and percentages (2 weeks) Geometry (position and direction) (1 week)	Measurement (volume and capacity) (1 week) Four operations (with volume and capacity) (1 week) Measurement (length and mass) (1 week) Four operations (with length and mass) (1 week) Geometry (properties of shape)

		Four operations (with measurement) (1 week)				(1 week) Statistics (with addition and subtraction) (1 week) Measurement (time) (1 week)
Year 5	Number and place value (2 weeks) Addition and subtraction (2 weeks) Multiplication and division (2 weeks) Four operations (1 week)	Fractions, decimals and percentages (2 weeks) Geometry (properties of shape) (1 week) Measurement (length and mass) (1 week) Measurement (volume and capacity) (1 week) Four operations (with volume, capacity, length and mass) (1 week) Statistics (1 week)	Number and place value (1 week) Addition and subtraction (1 week) Multiplication and division (1 week) Fractions, decimals and percentages (3 weeks)	Measurement (money) (1 week) Four operations (with money) (1 week) Measurement (time) (1 week) Geometry (position and direction) (1 week) Geometry (properties of shape) (1 week)	Number and place value (1 week) Addition and subtraction (1 week) Multiplication and division (1 week) Fractions, decimals and percentages (3 weeks)	Statistics (1 week) Geometry (position and direction) (1 week) Geometry (properties of shape) (1 week) Measurement (volume and capacity) (1 week) Measurement (length and mass) (1 week) Measurement (money) (1 week)

						Four operations (with measurement) (1 week)
Year 6	Number and place value (3 weeks) Addition and subtraction (with measures) (1 week) Multiplication and division (with measures) (2 weeks)	Fractions, decimals and percentages (2 weeks) Geometry (Properties of shapes) (1 week) Four operations (with measures) (1 week) Measures (Mass, capacity and volume) (1 week) Statistics (1 week)	Fractions, decimals and percentages (2 weeks) Multiplication and division (with measures) (1 week) Algebra (1 week) Four operations (with measures) (1 week)	Revision and review (2 weeks) Geometry (Position and direction) (1 week) Ratio and proportion (2 weeks)	Number and place value and four operations revision (1 week) Fractions, decimals and percentages revision (1 week) Geometry and measures revision (1 week) Algebra, ratio and proportion revision (1 week)	Theme Park Project (2 weeks) Enterprise Project (4 weeks) Consolidation and review (2 weeks)

	Reception			
	Subitising	Cardinality, Ordinality \& Counting	Composition	Comparison
	- perceptually subitise within 3 - identify sub-groups in larger arrangements - create their own patterns for numbers within 4 - practise using their fingers to represent quantities which they can subitise - experience subitising in a range of contexts, including temporal patterns made by sounds. - continue from first half-term - subitise within 5, perceptually and conceptually, depending on the arrangements. - increase confidence in subitising by continuing to explore patterns within 5 , including structured and random arrangements - explore a range of patterns made by some numbers greater than 5 , including structured patterns in which 5 is a clear part - experience patterns which show a small group and ' 1 more' - continue to match arrangements to finger patterns. - explore symmetrical patterns, in which each side is a familiar pattern, linking this to 'doubles'. - continue to practise increasingly familiar subitising arrangements, including those which expose ' 1 more' or 'doubles' patterns - use subitising skills to enable them to identify when patterns show the same number but in a different	- relate the counting sequence to cardinality, seeing that the last number spoken gives the number in the entire set - have a wide range of opportunities to develop their knowledge of the counting sequence, including through rhyme and song - have a wide range of opportunities to develop 1:1 correspondence, including by coordinating movement and counting - have opportunities to develop an understanding that anything can be counted, including actions and sounds - explore a range of strategies which support accurate counting. - continue to develop their counting skills - explore the cardinality of 5 , linking this to dice patterns and 5 fingers on 1 hand - begin to count beyond 5 - begin to recognise numerals, relating these to quantities they can subitise and count. - continue to develop verbal counting to 20 and beyond - continue to develop object counting skills, using a range of strategies to develop accuracy - continue to link counting to cardinality, including using their fingers to represent quantities between 5 and 10 - order numbers, linking cardinal and ordinal representations of number.	- see that all numbers can be made of 1s - compose their own collections within 4. - explore the concept of 'wholes' and 'parts' by looking at a range of objects that are composed of parts, some of which can be taken apart and some of which cannot - explore the composition of numbers within 5. - continue to explore the composition of 5 and practise recalling 'missing' or 'hidden' parts for 5 - explore the composition of 6 , linking this to familiar patterns, including symmetrical patterns - begin to see that numbers within 10 can be composed of ' 5 and a bit'. - explore the composition of odd and even numbers, looking at the 'shape' of these numbers - begin to link even numbers to doubles - begin to explore the composition of numbers within 10. - explore the composition of 10.	- understand that sets can be compared according to a range of attributes, including by their numerosity - use the language of comparison, including 'more than' and 'fewer than' compare sets 'just by looking'. - compare sets using a variety of strategies, including 'just by looking', by subitising and by matching - compare sets by matching, seeing that when every object in a set can be matched to one in the other set, they contain the same number and are equal amounts. - continue to compare sets using the language of comparison, and play games which involve comparing sets - continue to compare sets by matching, identifying when sets are equal - explore ways of making unequal sets equal. - compare numbers, reasoning about which is more, using both an understanding of the 'howmanyness' of a number, and its position in the number system. - order sets of objects, linking this to their understanding of the ordinal number system.

	- To subtract by taking away. - To subtract by counting on. - To subtract small numbers where sets are hidden. (counting on) - To subtract by counting backwards. - To subtract within 20 by regrouping into tens and ones - To use a number line to count back. - To make a family of number sentences - To use inverse (write corresponding subtraction facts to given addition factsnumber families). - To solve missing number problems - To solve one step word problems using part whole method	- To use the number bond strategy to subtract - To subtract a one digit number from a two digit number without regrouping - To subtract 2 twodigit numbers without regrouping - To use the counting backwards strategy to subtract - Use the 'take away' strategy to subtract - To subtract a one digit number from a two digit number with regrouping - To subtract 2 twodigit numbers with regrouping - To solve one step word problems using 'part, whole'	subtract with regrouping in tens and ones - To subtract a 3 digit number with regrouping in hundreds and tens - To subtract a 3 digit number with regrouping in hundreds, tens and ones - To count back to find the difference - To estimate the answer to a calculation To use inverse operations to check answers - To subtract 'taking away' one set using the bar model - To subtract 'comparing two sets' using the bar model	hundreds, thousands, tens and ones - To subtract with numbers that have zeros - To identify common misconceptions in column subtraction - To round off numbers to the nearest 10 / 100. - To estimate and use the inverse to check - To subtract decimals up to 2 decimal places - To solve subtraction two step word problems - Use take away and comparing models to solve subtraction word problems.	To round off numbers to the nearest 100. - To subtract decimals up to 2 decimal places - To subtract money using the column method (regrouping) - To subtract measures using the column method (regrouping) - To find the missing value - To solve two step word problems using the bar model	- To understand the order of operations using brackets. - To round numbers accurately - To solve multi step word problems.
Multiplication \& Division	Multiplication - To place objects into equal groups - To double numbers - To double two digit numbers - To place objects into arrays - To pictorially represent multiplication sentences - To understand repeated addition - Can describe an array in two ways - Tomake multiplication stories	Multiplication - To identify odd and even numbers - To understand multiplication as repeated addition - To use arrays - To know 2,5,10 timestables. - To multiply using partitioning - To understand the commutative property of multiplication. - To interpret multiplication sentences	Multiplication - To use number bonds for factors and products - To understand how place value changes when multiplying by 10 - To calculate two digit numbers multiplied by one digit numbers - To carry out short multiplication without regrouping - To carry out short multiplication with regrouping in ones, tens and hundreds	Multiplication - To multiply by ten using place value grids and dienes - To multiply two digit numbers by a one digit number - To multiply three digit numbers by one digit number - To multiply two digit by two digit number - To use the distributive law: $32 \times 3=(30 \times 3)+$ $(2 \times 3)=90+6=96$ - To use associative law to multiply three numbers	Multiplication - To identify common factors of two numbers. - To know prime numbers, prime factors and composite (non-prime) numbers - To solve problems involving multiplication. - To multiply numbers up to four digits by a one digit number - To multiply numbers up to four digits by a two digit number	Multiplication - To multiply multi digit numbers up to 4 digits by a two digit whole number - To carry out operations involving the four operations - To multiply fractions - To multiply decimals - To understand the order of operations using brackets - To relate common factors to equivalent fractions Division

		- To use arrays to help solve division problems - To create number families using multiplication and division facts. $(4 \times 5=20$ and $20 \div 5=4$) - To know whether to round up or down depending on context.			division by expressing results in different ways To solve multi step word problems	
Fractions, Decimals \& Percentages	To recognise half an object (as one of two equal parts) - To recognise a quarter of an object (as one of two equal parts) - To recognise half a shape (as one of two equal parts) - To recognise a quarter of a shape (as one of two equal parts) - To identify half a quantity (to share equally between 2) - To identify a quarter of a quantity (to share equally between 4) - To know that a quarter is the same as half and half again - To place fractions on a number line - To identify halves (use Cuisenaire rods)	- To divide shapes into equal parts. - To know that and is equal to a whole. - To identify fractions of a length. (using halves, thirds and quarters) - To identify fractions of a shape. (using halves, thirds and quarters) - To identify fractions of a set of objects by sharing equally. (between two, three and four) - To identify fractions of a quantity. (using halves, thirds and quarters) - To identify all the different ways to make fractions - To recognize fractions of a length, shape and object. - To recognise equivalent fractions. - To place fractions on a number line - To count in fractions - To use the bar model to show fraction	fractions of objects, shapes and length. (a unit fraction has 1 as the numerator) - To identify non-unit fractions of objects, shapes and length. (a non-unit fraction has >1 as the numerator) - To calculate fractions of a quantity - To recognise equivalent fractions - To recognise that tenths arise from dividing an object into ten equal parts - To compare fractions (fractions with the same denominator) - To order fractions (fractions with the same denominator) - To compare fractions with different denominators - To recognise equivalent fractions - To add like fractions (fractions with the same denominator) - To subtract like fractions	To identify equivalent fractions - Show equivalent fractions pictorially (and calculate equivalent fractions) To compare fractions To use factors and multiples to recognise equivalent fractions - To simplify fractions Add and subtract like fractions (fractions with the same denominator). - To calculate the fraction of numbers and quantities - Recognise and write decimal equivalents of any number of tenths of hundredths. - Recognise and write decimal equivalents to , $1 / 4,1 / 2,3 / 4$. Compare numbers with the same number of decimal places (up to 2 decimal places) - Round decimals with one decimal place to the nearest whole number. - To connect fractions, decimals and	To identify equivalent fractions (including tenths and hundredths) - To compare and order fractions (whose denominators are multiples of the same number) - To calculate fractions of numbers and quantities. - Read and write decimal numbers as fractions. - To convert mixed numbers to improper fractions (and back) - To add and subtract fractions with the same denominator - To add and subtract fractions with denominators that are multiples of the same number. - To add and subtract decimals - To multiply fraction and mixed numbers by a whole number. (use diagrams to support) - To convert fractions to percentage	- To compare and order fractions (including fractions >1) - To use common factors to simplify fractions - To use common multiples to express fractions in the same denomination - To add and subtract fractions with denominators that are multiples of the same number - To add and subtract fractions with different denominators and mixed numbers (using equivalent fractions) - To multiply simple pairs of proper fractions (writing the answer in its simplest form) - To divide proper fractions by whole numbers. - To calculate decimal fraction equivalents (by dividing using a simple fraction) - To multiply one digit numbers with up to

	- To link turns with the hands on a clock		- To identify horizontal and vertical lines. - To identify pairs of perpendicular and parallel lines.	To describe position on a 2-D grid as coordinates. $(2,5)$ - Describe movements between positions as translations (left, right, up, down) - To plot specified points. - To draw a polygon. - To draw a pair of axes. - To use coordinate plotting ICT tools.	To reflect the position of a shape in all four quadrants (extension) - To translate the position of a shape - To translate the position of a shape in all four quadrants (extension) - To use a 2-D grid and coordinates in the first quadrant - To use a 2-D grid and coordinates in all four quadrants. (extension).	- To reflect simple shapes in the axes. - To draw and label all four quadrants with equal scaling. - To use the properties of shapes to predict missing coordinates - To express translations algebraically.
Measurement	- To compare and order length - To measure using a start line - To measure in non standard units - To compare and order mass - To weigh mass in non standard units - To compare and order capacity and volume - To sequence events in chronological order. - To tell the time to the hour - To tell the time to the half hour - To recognise and know the value of different coins and notes - To exchange money - To solve problems involving money (making amounts in different ways)	- To measure and compare lengths and heights in metres (> < $=)$. - To measure and compare lengths and heights in centimetres. - To solve length problems using the four operations. - To measure and compare masses in kilograms (> < =). - To measure and compare masses in grams (> < =). - To solve mass problems using the four operations. - To measure and compare temperature (><=). - To measure and compare volume (> < $=$). - To recognise and use coins and notes and compare amounts.	To measure and compare lengths in m, cm and mm . - To use multiplication and division to scale by integers. - To measure and compare mass in Kg and g. - To measure and compare volume in 1/ml. - To solve measurement problems using both addition and subtraction. - To convert between different units of measure. - To measure and calculate perimeter of 2D shapes. - To calculate change given in both $£$ and p. - Tell and write the time from an analogue clock (standard clock and with Roman numerals).	- To convert units of measure. - To measure and calculate the perimeter of rectilinear shapes. - To find the area of rectilinear shapes (by counting squares). - To estimate, compare and calculate measures. - To calculate money in pounds and pence using four operations. - To convert time between analogue and digital clocks (12 hour and 24 hour). - To solve problems involving converting time. - To calculate time durations that pass through the hour.	- To convert between different units of metric measure. - To use multiplication and division to inter scale and calculate changing rates. - To use approximate equivalences between metric and imperial units. - To measure and calculate the perimeter of composite rectilinear shapes. - To solve missing measure questions when presented algebraically. - To calculate and compare the area of rectangles. (cm^{2} and m^{2}) - To estimate the area of irregular shape. - To estimate and measure capacity. - To estimate volume.	- To convert measures using decimal notation (to three decimal places). - To convert between miles and kilometres. - To connect conversion to a graphical representation. - To add and subtract positive and negative integers using a numberline. - To prove that shapes with the same area can have different perimeters. - To understand when to use a formula to calculate area/volume. - To calculate the area of parallelograms - To calculate the area of triangles. - To calculate, estimate and compare the volume of cubes and cuboids

		- To select different combinations of coins to make a particular value. - To calculate giving change up to and including $£ 1.00$. - To exchange pence for pounds. - To compare and sequence intervals of time. - To tell and write the time to quarter past/to and five minutes.	- To match digital and analogue clocks. - To read and record time to the nearest minute. - To compare time in seconds, minutes and hours. - To convert hours and minutes. - To calculate and compare duration of events.		- To solve problems involving converting units of time. - To use all four operations to solve problems involving measure.	- To solve problems involving money using the four operations. - To solve time duration problems using the four operations.
Statistics		To replace accordingly with pictograms/tally charts/block diagrams/simple tableso count the number of objects in each category and sort the categories by quantity. - To compare categorical data - To make pictograms and graphs where one symbol represents more than one unit. - To read and interpret a simple key - To ask and answer questions about categorical data. - To read the scale on a graph. - To sort objects using more than one criteria (Carroll diagrams) - To sort objects using more than one criteria (Venn diagrams)	To interpret and present data using bar charts - To interpret and present data using pictograms - To interpret and present data using tables - To recognise importance of titles and labels when sorting data - To solve one step questions using statistical information. - To solve two step questions using statistical information - To understand and use simple scales - To classify shapes, numbers and objects into a Venn diagram. - To classify shapes, numbers and objects into a Carroll diagram	To interpret and present data in a bar chart - To interpret and present data in a time graph - To solve comparison problems using information presented (in a range of tables/graphs). - To solve sum problems using the information presented (in a range of tables/graphs). - To solve finding the difference problems using the information presented (in a range of tables/graphs). - To understand and use a range of scales. - To understand the recording of change over time. - To record change over time in a range of graphs.	- To solve comparison problems using information in a line graph. - To solve sum problems using information in a line graph - To solve difference problems using information in a line graph. - To complete, read and interpret information in tables (including time tables) - To make links with coordinates - To choose the appropriate representations of data.	- To interpret line graphs. - To construct line graphs - To solve problems using line graphs. - To interpret pie charts - To construct pie charts (using a computer programme). - To solve problems using pie charts - To connect angles and pie charts - To connect fractions and percentages with pie charts - To calculate and interpret the mean as the average. - To draw graphs relating to two variables. - To connect conversion from km to miles in measurement to its graphical representation.

				- To record data into Venn and Carroll diagrams.		- To choose the appropriate representations of data.
Algebra						- To use simple formula to generate, express and describe: -Linear number sequences -Mathematical formula -Missing number, lengths, coordinates and angles problems -equivalent expressions $(a+b=b+a)$ - To find pairs of numbers that satisfy and equation with two unknowns - To find all possibilities of combinations of two variables.
Ratio \& Proportion	\|					- To use ratio to compare two things - To find equivalent ratios - To compare three quantities using ratios - To follow simple recipes involving basic proportions - To read a simple scale on a map e.g. $1 \mathrm{~cm}=$ $100 \mathrm{~cm}, 250: 1$ means $1 \mathrm{~cm}=2.5 \mathrm{~m}$. - To solve problems involving missing values. (using integer multiplication and division facts). - To solve problems involving percentages - To use percentages for comparison

Times Tables Progression Map

Year Group	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 1	Count forwards and backwards in 2s, linking with even numbers and doubling. Count forwards and backwards in 10.		Count forwards and backwards in 5s, linking with counting in 10s. Develop fluency for counting forwards and backwards in 2s and 10s.		Count forwards and backwards in 2 s , 5 s and 10 s with growing fluency.	Count forwards and backwards in 2 s , 5 s and 10 s fluently.
Year 2	Consolidate counting in steps of 2,5 and 10 in order from. 0 up to $12 x$.	Count in steps of 2 and 5 from 0 up to $12 x$ fluently. Recall multiplication facts for the 10 times table, including missing number questions, and division facts with growing fluency.	Recall multiplication facts for the 10 times table, including missing number questions, and division facts fluently. Recall multiplication facts for the 2 times table, including missing number questions, and division facts with growing fluency.	Recall multiplication facts for the 2 times table, including missing number questions, and division facts with growing fluency. Recall multiplication facts for the 5 times table, including missing number questions, and division facts with growing fluency.	Recall multiplication facts for the 2 times table, including missing number questions, and division facts fluently. Recall multiplication facts for the 5 times table, including missing number questions, and division facts with growing fluency.	Recall multiplication facts for the 5 times table, including missing number questions, and division facts fluently. Mixed practice multiplication and division facts for 2,5 and 10 times tables.
Year 3	Recall multiples of 2,5 , and 10 in any order, including missing numbers and related division facts fluently. Count in multiples of 4 to $12 x$ 4 in order from 0 fluently, using multiples of 2 to support, and begin to recall multiplication facts.	Recall multiplication and division facts for the 4 times table, including missing number questions. Count in multiples of 8 to $12 x$ 8 in order from 0 fluently, using multiples of 4 to support, and begin to recall multiplication facts.	Recall multiplication and division facts for the 8 times table, including missing number questions. Count in multiples of 3 to $12 x$ in order from 0 fluently and begin to recall multiplication facts.	Recall multiplication and division facts for the 3 times table, including missing number questions.	Mixed practice multiplication and division facts for $2,3,4,5$, 8 and 10 times tables.	Reasoning and problem solving for all multiplication and division facts for $2,3,4,5,8$ and 10 times tables.
Year 4	Recall multiples of 2, 3, 4, 5, 8 and 10 in any order, including missing numbers and related division facts fluently. Fluently count in 6's in any order up to 12×6, using multiples of 3 to support, and recall multiplication facts.	Recall multiplication and division facts for the 6 times table, including missing number questions. Fluently count in 9's in any order up to 12×9, using multiples of 3 and 6 to support, and recall multiplication facts	Recall multiplication and division facts for the 9 times table, including missing number questions. (Using 10x and adjusting by 1) Fluently count in 11's in any order up to 12×11, and recall multiplication facts	Recall multiplication and division facts for the 11 times table, including missing number questions. (Using 10x and adjusting by 1) Fluently count in 7's in any order up to 12×7, and recall multiplication facts.	Recall multiplication and division facts for the 7 times table, including missing number questions. Fluently count in 12 s , in any order up to 12×12, and recall multiplication and division facts and missing number questions. (Using 10x nd adjusting by adding 2 more groups)	Mixed practice multiplication and division facts for up to 12 x 12
Year 5	Recall multiplication and divisio including missing numbers and	on facts for the 12 times tables, related division facts fluently.				

Mental Calculations Progression Map

Reception		
Foundations	- To know that the numeral represents a quantity - To be able to subitise up to 10 where patterns are arranged in diff - To read numbers to 20 - To order numbers to 20 - To count accurately to 20 with $1: 1$ correspondence	
Mental Strategies		
Counting forwards and back in steps.	- Count on or back in ones from any number to 20 - To identify one more or one less than a number within 20	$\begin{array}{ll} \hline \cdot & 4+1 \\ \cdot & 15-1 \\ \hline \end{array}$
Reordering calculations.	- To reorder numbers in calculations to make them easier to calculate	- $2+7=7+2$
Making and breaking numbers	- To partition numbers to 10	- $5+\ldots=10$
Partitioning by bridging a multiple of 10,	- To know number bonds to 5	- What do I need to add to 2 to make 5? - $3+=5$ - $4+\overline{1}=$
Doubles.	- To identify doubles to 5 + 5	$\begin{array}{ll} \hline \cdot & 4+4 \\ \cdot & 3+=6 \\ \hline \end{array}$
Year 1		
Rapid Recall	- Addition and subtraction facts to 10 - Addition and subtraction facts within 10 - Doubles for all numbers to ten and the corresponding halves - One more / less than any number to 100 - 10 more / less than any multiple of ten	
Mental Strategies		
Counting forwards and back in steps.	- Count on or back in ones from any number - Count on or back in twos, fives and tens.	$\begin{array}{ll} . & 6+1 \\ \cdot & 11-1 \\ \cdot & 18-4(18-2-2) \\ \cdot & 15-5 \\ . & 20-10 \end{array}$
Reordering calculations	- Reorder numbers in a calculation considering which number is easier to count on from / can we reorder this question? ie 7-2 can't be reordering 2-7. - Looking for bonds, doubles, known facts	$\begin{array}{ll} \cdot & 2+7=7+2 \\ & 5+13=13+5 \\ - & 7+4+3=7+3+4 \\ \hline \end{array}$
Partitioning and counting on/back	- Partition into tens and ones to add teen numbers to single digits	- $13+4=10+3+4$

	- Add and subtract 10 and 100 to a given number - Number pairs to 100 e.g., $45+55$ - Multiplication and corresponding division facts for the $2,5,10,4,8$ and 3 times tables - To identify whether numbers are multiples of $2,5,10$ and 50 - Quickly derive doubles up to $20+20$	
Mental Strategies		
Counting forwards and back in steps.	- Count in multiples of 50 and 100 - Count in multiples of 2, 3, 4, 5, 8 and 10 - Count on or back in tens from any 2 or 3 digit number - Count on or back in 100 s from any 3 digit number.	- $124+40,456-30 \quad$ - $350+400,1500-600,400+267$
Reordering calculations	- Putting the largest number first - Using Number bonds - Using doubles or near doubles - Using friendly numbers	- $23+52=52+23$. $16+7+4=16+4+7$. $15+22+16=$ - $15+16=31$ - $12-7-22=53$ - $22-2-7$
Partitioning and counting on/back	- Partitioning and recombining	- $23+45=20+40+3+5$ - $68-32=68-30-2$
Partitioning by bridging a multiple of 10	- Making and breaking one of the addends to bridge a multiple of 10	$\begin{array}{ll} \hline \cdot \quad 80+34=80+20+14 \\ \cdot \quad 125-37=125-25-22 \\ \cdot \quad 196+27=196+4+23 \\ \hline \end{array}$
Partitioning by compensating	- Add and subtract a number by adding or subtracting the multiple of 10 and adjusting by 1 .	$\begin{array}{ll} \hline & 53+11,53+41 \\ \cdot & 53+9,53+39 \\ \cdot & 84-11,84-41 \\ . & 84-9,84-49 \end{array}$
Partitioning using near doubles	- Identifying the double and adjusting.	- $\quad 18+16=$ double $16+2$ - $\quad 36+35=$ double $35+1$ $60+70=$ double $60+10$
Partitioning by bridging through 60 (time intervals)	- Using number lines as jottings or mentally to add or subtract time or find time durations.	- 40 minutes after 3.30 pm - 50 minutes before 5.00 pm - It is 9.45 am . How many minutes until 10.15 am ?
Year 4		
Rapid Recall	- Rapid recall of all addition and subtraction facts to 20 - Multiplication and corresponding division facts for all times-tables - To multiply and divide by 10,100 and 1000. - To add or subtract 10,100 or 1000 to any number with up to 4 digits. - Derive quickly number pairs that make 100 and pairs of multiples of - Know all doubles up to $50+50$, and multiples of 10 (e.g. $230+230$)	12 at make 1000. ltiples of 100 (e.g. $1800+1800$)
Mental Strategies		
Counting forwards and back in steps.	- Count in multiples of 25 and 1000 - Count in multiples of $2,3,4,5,6,7,8,9$ and 10 - Count on or back in tens from any 3 digit number, crossing boundaries.	$\begin{array}{ll} \cdot & 184+40,416-30 \\ \cdot & 850+400,1500-800,400+1267 \\ \cdot & 2656+7000 \\ \cdot & 1267-500 \end{array}$

		Count on or back in 100s from any 3 digit number, crossing boundaries. Count on or back in 1000s from any number, crossing boundaries. Count backwards through zero to negative numbers.		$\begin{aligned} & 4-7 \\ & 23-30 \end{aligned}$
Reordering calculations (when it is presented in written form)		Using Number bonds Using doubles or near doubles. Using friendly numbers Reordering calculations where there are different operations		$\begin{aligned} & 65+81+35=65+35+81 \\ & 1600+1800+1600=1600+1600+1800 \\ & 28+75=75+25+3 \\ & 17+9-7=17-7+9 \end{aligned}$
Partitioning and counting on/back		Partitioning and recombining in 3 digit numbers Partitioning one of the numbers in an addition or subtraction.		$\begin{aligned} & 123+452=100+400+20+50+3+2 \\ & 623+263=623+200+60+3 \\ & 681-57=681-50-7 \end{aligned}$
Partitioning by bridging a multiple of 10		Making and breaking one of the addends/ subtrahends to bridge a multiple of 10 Making and breaking one of the addends/ subtrahends to bridge a multiple of 100 Finding out what to add to a 3 digit number to make the next multiple of 100. Adding numbers with 1 dp to make next whole no.		$\begin{aligned} & 87+45=87+3+42 \\ & 53-27=53-3-24 \\ & 87+25+87+13+12 \\ & 114-25=114-14-11 \\ & 246+\ldots=300 \\ & 3.4+\ldots=4 \end{aligned}$
Partitioning by compensating		Add and subtract a number by adding /subtracting the multiple of 10 and adjusting .		$\begin{aligned} & 53+39=53+40-1 \\ & 84-49=84-50+1 \\ & 135+99=135+100-1 \\ & 247-99=247-100+1 \end{aligned}$
Partitioning using near doubles		Identifying the double and adjusting.	-	$\begin{aligned} & 35+38=35+35+3 \\ & 160+170= \\ & 150+150+30 \\ & 400+400-20-20 \end{aligned}$
Partitioning by bridging through 60 (time intervals)		Using number lines as jottings or mentally to add or subtract time or find time durations.		It is 3.25 pm . How many minutes until 4.10pm?
Year 5				
Rapid Recall	- Multiplication and corresponding division facts for all times tables up to 12×12 - To multiply and divide whole numbers and decimals by 10,100 and 1000. - To know 1000, 10,000 and 100,000 more/less than any 6-digit number			
Mental Strategies				
Counting forwards and back in steps.		To count in steps of powers of 10 up to 1,000,000. To count forwards and backwards with positive and negative whole integers (including through zero) To count on/back in quarters To add a 3 digit multiple of 10 to a 3 -digit number without crossing the hundreds barrier To subtract multiples of 10 and 100		$\begin{aligned} & 11 / 2+3 / 4 \\ & 230+364= \\ & 620-380,6200-3800 \end{aligned}$
Reordering calculations (when it is presented in written form)		Using Number bonds Using doubles or near doubles. Using friendly numbers Reordering calculations where there are different operations		$\begin{aligned} & 65+81+35=65+35+81 \\ & 850+620+150= \\ & 1600+1800+1600=1600+1600+1800 \\ & 1.7+2.8+0.3= \\ & 1.7+0.3+2.8 \end{aligned}$

		$\begin{aligned} & \hline \cdot \\ & \hline \end{aligned} \quad 28+75=75+25+3+48+47-38=58-38+47 .$
Partitioning and counting on/back	- Partitioning and recombining in 3 digit numbers - Partitioning one of the numbers in an addition or subtraction. - Adding 3 two digit numbers - Partitioning numbers with 1 decimal point.	- $123+452=100+400+20+50+3+2$ - $623+263=623+200+60+3$ - 681-57 = 681-50-7 - $43+28+51=$ - $40+20+50+3+8+1$ - $5.6+3.7=5.6+3+0.7$ - $4.7-3.5=4.7-3-0.5$
Partitioning by bridging a multiple of 10	- Making and breaking one of the addends/ subtrahends to bridge 1 - Adding numbers with 2 decimal point to make the next whole number - Finding the difference between two decimal numbers by bridging a tenth. - Finding the difference between two 4-digit numbers by bridging a multiple of 1000.	- $3.8+2.6=3.8+0.2+2.4$ - $23.27+$ \qquad $=24.00$ - $0.7-0.26=$ - $0.26+0.04=0.3$ - $0.3+0.4=0.7$ - $3009-2850=$
Partitioning by compensating	- Add and subtract a number by adding /subtracting the multiple of 10 or 100 and adjusting - Partition by compensating with money and measure. - Bridging whole numbers when adding and subtracting mixed fractions	- $84-48=84-50+2$ - $135+99=135+100-1$ - $405-399=405-400+1$ - $£ 3.45+99 p$ - $21 / 2+13 / 4=21 / 2+2-1 / 4$
Partitioning using near doubles	- Identify doubles in decimal numbers	- $1.5+1.6=1.5+1.5+0.1$ - $1.6+1.6-0.1$
Partitioning by bridging through 60 (time intervals)	- Using number lines as jottings or mentally to add or subtract time or find time durations.	- The time is 11.30. How many minutes until 14.20?
Year 6		
Rapid Recall	- Multiplication and division facts including scaling up and scaling do - Squares of numbers to 12×12 and the corresponding squares of m - To multiply and divide whole numbers and decimals by 10,100 and - To know 1000, 10,000 and 100,000 more/less than any 6 digit num	$0.8 \times 7,4.8 \div 6,600 \times 7,810 \div 9$ s of 10
Mental Strategies		
Counting forwards and back in steps.	- Count in multiples of any number. - To be able to count forwards and backwards in $11 \mathrm{~s}, 15 \mathrm{~s}, 19 \mathrm{~s}, 21 \mathrm{~s}$ and 25 s (dipping into zero) - To count in steps of $0.1,0.5,0.25$ to 10 and back. - To count in steps of powers of 10 up to $1,0000,000$ - Count backwards through zero to negative numbers.	- $1.7+0.5$
Reordering calculations	- Using Number bonds to multiples of 10 or 1 - Reordering calculations where there are different operations	$\begin{array}{ll} \hline \text { - } & 34+27+46=34+46+27 \\ \text { - } & 4.6+3.8+2.4= \\ \text { - } & 4.6+2.4+3.8 \\ \text { - } & 8.7+5.6-6.7= \\ \text { - } & 8.7-6.7+5 . \\ \hline \end{array}$
Partitioning and counting on/back	- Partitioning one of the numbers in an addition or subtraction. - Adding 3 two digit numbers	$\begin{aligned} & \text { • } \quad 623+263=623+200+60+3 \\ & \cdot \\ & \hline \end{aligned}$

	- Partitioning numbers with 1 dp .	$\begin{array}{ll} \cdot & 43+28+51=40+20+50+3+8+1 \\ \cdot & 5.6+3.7=5.6+3+0.7 \\ \cdot & 4.7-3.5=4.7-3-0.5 \\ \hline \end{array}$
Partitioning by bridging a multiple of 10	- Making and breaking one of the addends to bridge 1 - Finding the difference between two decimal numbers by bridging a tenth. - Finding the difference between two 4 digit numbers by bridging a multiple of 1000 - Making and breaking one of the addends/ subtrahends to bridge a multiple of 100 - Bridging in the context of money.	$\begin{array}{ll} \cdot \cdot & 3.8+2.6=3.8+0.2+2.4 \\ \cdot \mathbf{C} & 0.8+0.35=0.8+0.2+0.15 \\ \cdot & 0.7-0.26=0.26+0.04=0.3 \\ \cdot & 0.3+0.4=0.7 \\ \cdot & 3.6-2.7=2.7+0.3=3 \\ \cdot & 3+0.6=3.6 \\ \cdot & 300-2850= \\ \cdot & 596+134=596+4+130 \\ \cdot & 584-176=584-184+8 \\ \cdot & £ 23.50-£ 17.75 \\ \hline \end{array}$
Partitioning by compensating	- Add and subtract a number by adding /subtracting the multiple of 1 and adjusting.	$\begin{array}{ll} \bullet & 5.7+3.9=5.7+4.0-0.1 \\ \bullet & 6.7-4.8=6.7-5+0.2 \\ \hline \end{array}$
Partitioning using near doubles	- Identify doubles in decimal numbers - Identify near doubles	$\begin{aligned} & 3.75+3.65=3.65+3.65+0.1 \\ & 3.75+3.75-0.1 \\ & 5.3+5.5=5.3+5.3+0.2=5.5+5.5-0.2 \\ & 421+387=\text { double } 400+21-13 \end{aligned}$
Partitioning by bridging through 60 (time intervals)	- Using number lines as jottings or mentally to add or subtract time or find time durations.	- The time is 11.30 . How many minutes until 14.20 ?

